期刊文献+
共找到12,246篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进粒子群算法的光伏逆变器控制参数辨识 被引量:3
1
作者 罗建 孙越 江丽娟 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期124-133,共10页
精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW... 精准的光伏并网逆变器模型是研究大规模光伏接入下电力系统故障特性的重要工具。目的为了解决现有光伏逆变器仿真模型与实际工作中的光伏逆变器特性相差较大的问题,方法提出采用参数辨识的方法构建逆变器的辨识模型。以重庆云阳某1 MW光伏电站为实际参照模型,首先根据实际工作情况将逆变器的工作区间划分为3个阶段,利用数学扰动法分别对3个阶段中的待辨识参数划分灵敏度高低等级,并由此提出不同阶段不同灵敏度参数分步辨识策略;其次,分阶段采集实际光伏电站工作数据,对该数据进行分析处理,获得各待辨识参数的初始取值范围,设计同步辨识参数实验作为参照;最后提出改进的混沌遗传粒子群优化算法(chaos genetic algorithm of particle swarm optimization,CGAPSO)作为辨识算法,分步分工作阶段辨识相关参数,通过对比参数的同步辨识结果,验证所提方法的优越性,并将辨识结果代入仿真模型。结果结果表明,低灵敏度参数的同步辨识结果误差远超过可接受范围,而CGAPSO分步辨识出的相关参数误差皆在1.1%以下,精度远高于同步辨识结果。结论基于改进粒子群算法构建的辨识模型输出数据与实际逆变器工作数据契合度高,可准确反映逆变器实际工作特性。 展开更多
关键词 光伏并网逆变器 逆变器控制策略 参数辨识 数学扰动法 改进粒子优化算法
在线阅读 下载PDF
基于系统辨识和改进多目标粒子群算法的水泥原料配比优化
2
作者 秦红斌 陈龙 +1 位作者 唐红涛 张峰 《控制工程》 北大核心 2025年第7期1260-1270,共11页
为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对... 为了得到高品质、低成本的水泥生料,对原料配比优化问题进行了研究。首先,针对原料氧化物含量波动和立磨工况变化的问题,提出了原料氧化物含量等效值的概念,将其作为水泥生料氧化物含量和原料配比之间的关系参数,并利用系统辨识方法对其进行求解;然后,建立了以最小化原料成本和原料配比调整量为目标的原料配比多目标优化模型,将各项生料质量控制指标加入约束条件以保证解的可行性,并提出了改进多目标粒子群优化算法对模型进行求解。实验结果表明,相比于非支配排序遗传算法II(non-dominated sorting genetic algorithm II,NSGA-II)和人工配比,采用所提算法优化原料配比,不仅将各项生料质量控制指标较好地控制在目标范围内,还降低了原料成本。 展开更多
关键词 水泥原料配比 原料氧化物含量等效值 系统辨识 改进多目标粒子优化算法
在线阅读 下载PDF
改进粒子群算法的无人机B样条曲线路径规划
3
作者 杨火根 王艳 骆伟 《郑州大学学报(工学版)》 北大核心 2025年第4期8-15,共8页
针对粒子群算法在无人机路径规划中易陷入局部最优解,且在离散路径点光滑处理后对避障考虑不足的问题,提出一种基于改进粒子群算法的无人机三维B样条曲线路径规划方法。首先,综合考虑无人机路径长度、安全避障、飞行高度及平稳性等飞行... 针对粒子群算法在无人机路径规划中易陷入局部最优解,且在离散路径点光滑处理后对避障考虑不足的问题,提出一种基于改进粒子群算法的无人机三维B样条曲线路径规划方法。首先,综合考虑无人机路径长度、安全避障、飞行高度及平稳性等飞行性能要求,利用B样条曲线的几何性质构建路径规划模型;其次,采用改进的粒子群算法对模型进行求解,算法改进主要通过优化粒子初始化策略、惯性权重因子和学习因子更新策略、增加粒子扰动策略来实现;最后,在CEC2017标准测试函数集上进行测试。结果表明:改进的粒子群算法在对比算法中表现出更强的寻优能力,稳定性也更好。两个场景的仿真结果表明:所规划的路径代价可减少2%,稳定性可提高65%,路径安全避障且C 2连续,能满足无人机飞行综合性能要求。 展开更多
关键词 无人机 B样条曲线 路径规划 避障 改进粒子算法
在线阅读 下载PDF
基于改进粒子群算法的高地隙无人喷雾机对不规则凸田块的全覆盖作业路径规划
4
作者 刘国海 万亚连 +3 位作者 沈跃 刘慧 何思伟 张亚飞 《华南农业大学学报》 北大核心 2025年第3期390-398,共9页
【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转... 【目的】满足高地隙无人喷雾机自主导航全覆盖作业的应用需求并优化农机作业效率。【方法】提出了一种针对不规则凸田块的全覆盖遍历路径规划算法。首先,通过获取农田区域的边界数据,得到不规则凸田块的边界轮廓模型;其次,在传统U型转弯方式的基础上,引入作业行与田块边界的夹角,对作业行间的衔接路径原理进行详细阐述;由经过不规则凸区域中心点的直线进行平行线偏移,生成随机方向角的全覆盖作业行后,通过改进的粒子群优化(Particle swarm optimizer,PSO)算法对作业行方向角进行最优化,规划出遍历田块的全覆盖作业路径;最后,将算法在4块典型实际田块中进行仿真测试。【结果】与传统路径规划算法相比,改进PSO算法在1~4个田块的总遍历距离分别减少9.01、23.25、8.71和14.32 m,转弯次数减少率分别下降11.1%、61.5%、16.7%和5.3%,额外覆盖比分别减少0.20、0.96、0.45和1.96个百分点,有效减少了无人农机的能量消耗、提高了作业效率。【结论】在作业区域被完全覆盖的前提下,本算法能规划出无人农机行驶路程较短、覆盖率较高和转弯次数较少的作业路径,可为无人农机的路径规划技术的发展提供理论支撑。 展开更多
关键词 无人农机 全覆盖路径规划 路径规划 粒子算法 不规则凸田块 高地隙无人喷雾机
在线阅读 下载PDF
粒子群优化算法结合改进回声状态网络的PEMFC剩余使用寿命预测
5
作者 高锋阳 刘嘉 +3 位作者 杨栋 韩国鹏 齐丰旭 刘庆寅 《西北工业大学学报》 北大核心 2025年第3期478-487,共10页
为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改... 为提高质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)退化预测的精度,提出一种基于粒子群(particle swarm optimization,PSO)算法优化改进回声状态网络(revised echo state network,RESN)的PEMFC电压预测方法。通过改进回声状态网络水库中各神经元连接方式,加快非线性拟合过程;利用PSO算法优化模型谱半径、泄漏率、神经元数量等,提高模型预测精度,采用SG(Savitzky-Golay)滤波算法对原始数据有效去峰去噪,再利用PSO-RESN准确预测PEMFC电压;采用不同样本数据集作为训练集和测试集,将所提模型在静态和准动态实验数据集下与扩展卡尔曼滤波、传统回声状态网络进行对比。结果表明,在训练集占比为80%时,对于静态工况FC1,相较于ESN,PSO-RESN方法的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolute percentage error,MAPE)分别降低了17.50%和25.53%;对于准动态工况FC2,相较于ESN方法,PSO-RESN方法的均方根误差和平均百分比误差分别降低了16.93%和21.28%。所提方法能够实现PEMFC更高精度退化趋势与剩余使用寿命预测。 展开更多
关键词 质子交换膜燃料电池 退化预测 回声状态网络 粒子算法 剩余使用寿命
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
6
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习机 改进粒子优化算法
在线阅读 下载PDF
基于改进粒子群算法的SOTEM电场分量E_(x)反演
7
作者 张继锋 陈昌涧 +2 位作者 李宇腾 游希然 马子奔 《煤田地质与勘探》 北大核心 2025年第4期213-221,共9页
【目的】针对电性源短偏移距瞬变电磁法(SOTEM)水平电场分量反演中传统算法易陷入局部极值的问题,提出一种融合重心反向学习策略的改进粒子群算法。【方法】该算法通过引入重心反向学习策略,动态调整学习因子和自适应惯性权重,有效提升... 【目的】针对电性源短偏移距瞬变电磁法(SOTEM)水平电场分量反演中传统算法易陷入局部极值的问题,提出一种融合重心反向学习策略的改进粒子群算法。【方法】该算法通过引入重心反向学习策略,动态调整学习因子和自适应惯性权重,有效提升了全局搜索能力与收敛效率。研究构建了三层、五层及七层典型地电模型,来验证算法性能。【结果和结论】研究结果表明:对于五层和七层地电模型,阻尼最小二乘算法的反演平均误差分别为0.34%和4.68%,改进粒子群算法反演平均误差分别为0.21%和0.87%,可见改进粒子群算法反演对复杂地电结构的识别精度提升显著。在多层数(≥5)及宽泛参数搜索区间条件下,三层和五层地电模型反演平均误差均小于5%,验证了改进粒子群算法的有效性。利用某区实测数据进行阻尼最小二乘反演和改进粒子群算法反演,改进的粒子群算法较阻尼最小二乘算法有着较好的反演效果,反演结果与已知矿体的电性结构吻合较好,研究成果为提高SOTEM在矿产勘探中的分辨率提供了理论支持。 展开更多
关键词 电性源短偏移距瞬变电磁法 粒子算法 反演 电场分量Ex
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:2
8
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于改进粒子群算法的焊接缺陷三阈值图像分割方法
9
作者 罗威 吴超华 +2 位作者 肖俊 蔡舒 史晓亮 《科学技术与工程》 北大核心 2025年第22期9463-9470,共8页
为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的... 为解决焊接缺陷图像分割的结果出现失真、分割效果差的问题,以轮辋生产过程中的裂纹和气孔焊接缺陷图像为研究对象,提出了一种基于模拟退火(simulated annealing,SA)策略改进粒子群算法(improved particle swarm optimization,IPSO)的焊接缺陷三阈值图像分割方法。首先通过灰度值、平均灰度值和中值灰度值建立图像的三维最大类间方差(Otsu)模型;其次引入自适应惯性权重和非对称学习因子并融入SA策略增强算法求解效率和跳出局部最优的能力;最后利用SA-IPSO算法优化三维Otsu模型求解得到最佳阈值对应的缺陷分割图像。采用不同算法和模型对焊接缺陷图像进行分割,结果表明:对于裂纹和气孔焊接缺陷图像,本文算法在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)评价指标上均优于对比算法,在加快算法收敛的同时避免分割结果失真,提高了分割精度。 展开更多
关键词 阈值分割 三维Otsu 粒子优化算法 模拟退火策略 焊接缺陷
在线阅读 下载PDF
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究
10
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子优化算法 BP神经网络模型 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
基于改进多目标粒子群算法的可重构装配线调度
11
作者 董可欣 李梓响 +3 位作者 郑晨昱 张子凯 张利平 唐秋华 《组合机床与自动化加工技术》 北大核心 2025年第1期234-240,共7页
针对可重构装配线调度问题,构建了最小化重构成本、最小化生产负荷平衡和最小化物流平准化的多目标调度模型,设计了改进多目标粒子群算法。该算法采取了自适应调整策略和重启机制以保证种群多样性,帮助算法跳出局部最优。为了测试两种... 针对可重构装配线调度问题,构建了最小化重构成本、最小化生产负荷平衡和最小化物流平准化的多目标调度模型,设计了改进多目标粒子群算法。该算法采取了自适应调整策略和重启机制以保证种群多样性,帮助算法跳出局部最优。为了测试两种改进策略的有效性,所提出算法与两种多目标粒子群算法进行对比实验,实验结果表明自适应调整策略和重启机制有效提升了多目标粒子群算法的性能。同时,将改进多目标粒子群算法与原始多目标粒子群算法、多目标模拟退火算法、多目标人工蜂群算法、多目标差分进化算法、基于分解的多目标进化算法、快速非支配遗传算法进行对比。对100个测试案例进行求解,在世代距离、指标和超体积率上均表明改进多目标粒子群算法优于对比算法,可实现多目标可重构装配线调度问题的高效求解。 展开更多
关键词 可重构装配线 计划排序 多目标粒子算法 多目标优化
在线阅读 下载PDF
一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究
12
作者 徐展鹏 陈福新 +1 位作者 杨雪凡 卢琴芬 《太阳能学报》 北大核心 2025年第7期144-153,共10页
以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成... 以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成本和收益,且提出一种基于电氢储能实时收益系数的协调控制策略,使得光氢利润基于分时电价进行实时变化、储能设备的出力顺序根据实时收益系数来优化;优化变量为光、氢与储能的容量;优化方法为遗传算法改进的粒子群优化算法,其在改进粒子群优化算法引入遗传算法的思想,对粒子种群的位置进行选择、交叉与变异操作,提高全局优化能力。通过优化设计实例与影响因素分析实例,验证了优化模型的有效性。 展开更多
关键词 光氢储微电网 并网型 容量配置 遗传算法 改进粒子优化算法
在线阅读 下载PDF
基于改进粒子群算法的MMC-STATCOM参数仿射辨识方法
13
作者 黄耀宣 程杉 +2 位作者 黄永章 徐恒山 杜鹏飞 《电力系统保护与控制》 北大核心 2025年第9期176-187,共12页
参数辨识效果会强关联于耦合误差,同时参数的耦合误差又呈现出高复杂性特征,但传统粒子群算法难以高效利用耦合误差扩充算法搜索范围。提出一种基于改进粒子群算法的模块化多电平静止同步补偿器参数仿射辨识方法。首先,建立模块化多电... 参数辨识效果会强关联于耦合误差,同时参数的耦合误差又呈现出高复杂性特征,但传统粒子群算法难以高效利用耦合误差扩充算法搜索范围。提出一种基于改进粒子群算法的模块化多电平静止同步补偿器参数仿射辨识方法。首先,建立模块化多电平静止同步补偿器(modular multilevel converter static synchronous compensator,MMC-STATCOM)的数学模型,确定待辨识参数。其次,提出一种基于仿射算法的参数辨识方法,将参数辨识问题转化为参数与耦合误差联合辨识问题。在此基础上,采用熵权法综合考虑区间满足度和区间误差对辨识效果的影响,结合改进粒子群算法实现模块化多电平静止同步补偿器的参数与耦合误差的解耦辨识。仿真结果证明,参数和耦合误差的辨识误差分别在1.06%和2.95%以内。 展开更多
关键词 静止同步补偿器 模块化多电平变换器 改进粒子算法 仿射算法 熵权法 参数辨识
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
14
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
改进粒子群算法优化CNN LSTM Attention模型在安全生产事故预测中的应用 被引量:1
15
作者 汪敏 田大平 《安全与环境学报》 北大核心 2025年第5期1829-1837,共9页
安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、... 安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络和注意力(Attention)机制相结合的新方法,建立了IPSO-CNN-LSTMAttention模型以提高对安全生产事故和死亡人数预测的准确性。首先,引入了一种改进的粒子群算法,建立动态非线性惯性权重来寻找模型中重要超参数的最优值,利用CNN从输入数据中提取退化特征,然后结合LSTM捕捉历史序列的时间相关性。最后,引入注意力机制,增强关键信息的影响,优化了整体预测模型。将该模型与CNN模型、CNN-LSTM-Attention模型和PSO-CNN-LSTM-Attention模型进行比较,结果表明,该模型能有效地捕捉数据的变化趋势,且模型的平均绝对百分比误差、均方根误差、平均绝对误差和决定系数均优于其他模型,证实IPSO-CNN-LSTM-Attention模型达到了很好的拟合优度和预测精度。分析了各变量对预测的贡献程度,研究结果可为安全生产预警和预防提供参考。 展开更多
关键词 安全工程 改进粒子算法 卷积神经网络 长短期记忆 注意力机制 安全生产事故
在线阅读 下载PDF
基于改进分数阶粒子群算法的多无人车取送货任务调度方法
16
作者 陈玉全 冯丽曼 +2 位作者 孙克璇 张楠杰 王冰 《农业机械学报》 北大核心 2025年第6期109-118,共10页
针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order... 针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order particle swarm optimization,IFOPSO)。通过在粒子群算法(PSO)中引入分数阶列维随机步长,提高PSO的全局搜索能力,进一步设计列维阶次的自适应调整机制,提高IFOPSO的收敛精度和寻优性能。基于10个基准函数的对比实验结果表明,提出的IFOPSO算法在收敛速度、精度以及全局搜索能力等方面,相较于现有算法表现出显著优势。最后将IFOPSO算法应用于多无人车任务分配问题的求解中,并与传统PSO、改进PSO和分数阶PSO算法进行对比实验,结果表明该算法能够有效降低调度成本,并快速找到合理的取送货方案。 展开更多
关键词 农产品运输 任务分配 多车协同 分数阶粒子算法 列维随机步长 自适应列维阶次
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
17
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
基于改进遗传粒子群算法的无人机路径规划
18
作者 武晓雯 郭孟营 +1 位作者 胡阿建 吴卿 《仪器仪表学报》 北大核心 2025年第4期315-325,共11页
针对无人机高效飞行路径规划问题,提出一种改进遗传粒子群算法(IHGPA)。该算法在粒子群算法的基础上,融合多种策略,改善了收敛效果和解的质量。首先,为提升全局寻优能力,IHGPA算法引入分区优化策略,通过构建动态参数调整机制,优化了粒... 针对无人机高效飞行路径规划问题,提出一种改进遗传粒子群算法(IHGPA)。该算法在粒子群算法的基础上,融合多种策略,改善了收敛效果和解的质量。首先,为提升全局寻优能力,IHGPA算法引入分区优化策略,通过构建动态参数调整机制,优化了粒子速度与位置更新方式。其次,改进遗传算法的选择、交叉、变异算子进一步强化寻优能力,其中选择阶段采用轮盘赌方法与模拟退火算法优化并保留精英个体,交叉阶段结合概率算术交叉与改进模拟二进制交叉增加算法的种群多样性,变异阶段融合莱维飞行长步长扰动与多项式变异避免局部最优。最后,通过划分搜索区域交换最优解信息,并设置收敛检测机制,当适应度值小于设定阈值时对粒子进行二次优化,防止算法过早收敛。实验结果表明,在障碍物分散的环境1中,IHGPA算法的最佳适应度值相比遗传算法、粒子群算法、狼群算法、人工蜂群算法、蜣螂优化算法分别减少78.130%、46.190%、53.990%、41.124%、67.376%;在障碍物密集的环境2中,IHGPA算法的最佳适应度值相比上述算法分别减少89.990%、75.088%、76.503%、71.048%、81.061%。IHGPA算法能有效规划出安全且平滑的最佳飞行路径,并经多次实验验证展现出较好的稳定性和可靠性。 展开更多
关键词 粒子算法 无人机 路径规划 遗传算法
在线阅读 下载PDF
基于改进粒子群算法和RMxprt的永磁滚筒多目标优化设计
19
作者 冯立杰 付帅帅 张虎翼 《科学技术与工程》 北大核心 2025年第5期1936-1943,共8页
针对基于专家经验对永磁滚筒优化设计时,寻优效率比较低的问题,构建了一种基于改进粒子群优化算法和RMxprt联合仿真的永磁滚筒多目标优化设计方法。首先,提出了一种改进粒子群优化算法,提高了寻优收敛速度;其次,在永磁滚筒结构参数与性... 针对基于专家经验对永磁滚筒优化设计时,寻优效率比较低的问题,构建了一种基于改进粒子群优化算法和RMxprt联合仿真的永磁滚筒多目标优化设计方法。首先,提出了一种改进粒子群优化算法,提高了寻优收敛速度;其次,在永磁滚筒结构参数与性能参数关系分析的基础上明确了面向改进粒子群优化算法的变量参数、约束参数和优化参数;最后,通过MATLAB编写改进粒子群优化算法程序,利用改进粒子群优化算法程序实现RMxprt输入参数与输出参数的闭环迭代与比较寻优,提高了永磁滚筒优化设计的效率和优化效果。 展开更多
关键词 永磁滚筒 改进粒子优化算法 多目标优化设计 联合仿真
在线阅读 下载PDF
基于改进粒子群的云计算任务调度算法
20
作者 陈攀 孙鉴 +3 位作者 吴隹伟 武涛 杨晓焕 马宝全 《科学技术与工程》 北大核心 2025年第12期5045-5057,共13页
传统粒子群算法(particle swarm optimization,PSO)在云计算任务调度的性能和效率方面仍然存在局部搜索效率较低、搜索精度有限等不足,导致难以找到全局最优解并容易陷入局部最优解,针对此问题提出一种改进的粒子群任务调度算法(improve... 传统粒子群算法(particle swarm optimization,PSO)在云计算任务调度的性能和效率方面仍然存在局部搜索效率较低、搜索精度有限等不足,导致难以找到全局最优解并容易陷入局部最优解,针对此问题提出一种改进的粒子群任务调度算法(improved particle swarm optimization,IPSO)。首先,通过反向学习策略生成分布更加均匀的初始种群,提高算法的收敛速度。其次,在粒子更新过程中引入正弦余弦算法(sine cosine algorithm,SCA)以此提高粒子的寻优能力,平衡全局搜索和局部开发两个过程。最后,添加了基于平均适应度的搜索行为进一步扩大搜索解空间以找到更好的最优解,防止陷入局部最优。在CloudSim仿真平台上进行实验验证。实验结果表明:改进粒子群算法在降低系统任务的成本和最大完工时间上均有着显著的优势。特别是当任务数量达到500时,IPSO在总成本上相较于自适应粒子群算法(adaptive particle swarm optimization,AdPSO)、正弦余弦粒子群算法(sine cosine algorithm-particle swarm optimization,SCA-PSO)、模拟退火粒子群算法(simulated annealing particle swarm optimization,SAPSO)、增强型吞噬遗传算法(enhanced phagocytosis genetic algorithm,EPGA)、竞争交叉机制遗传算法(competitive crossover mechanism genetic algorithm,C2PGA)、反向学习粒子群算法(opposition based learning-particle swarm optimization,OBL-PSO)和PSO分别提升了10%、4.6%、8.6%、9.2%、8.2%、10.4%和11.3%,在最大完工时间上分别提升了34.1%、27%、41.7%、28.5%、21.6%、50.3%和54.8%,验证了IPSO在不同任务规模下解决云计算任务调度问题的可行性和有效性。 展开更多
关键词 云计算 任务调度 粒子算法(PSO) 正弦余弦算法(SCA) CloudSim
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部