正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(p...正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(partial transfer sequence,PTS)算法通过对数据符号分块再选取合适的旋转因子可以抑制PAPR。为提高PTS算法抑制PAPR的能力,提出了一种基于改进的灰狼优化(improved grey wolf optimizer,IGWO)算法的PTS算法,即IGWO-PTS算法,以适应离散组合优化问题并获得更优的子块划分方案,从而获得更好的PAPR抑制能力。推导证明了当相位旋转因子集合元素具有旋转对称性时,相位旋转因子组合空间可以收缩为原来的1 K(K为集合中元素个数),极大程度上降低了系统复杂度。仿真实验表明,IGWO-PTS算法相对于传统算法具有更好的PAPR抑制性能,并且在星地高动态场景下可以保持良好的传输可靠性。展开更多
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG...为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。展开更多
为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第...为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。展开更多
文摘正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(partial transfer sequence,PTS)算法通过对数据符号分块再选取合适的旋转因子可以抑制PAPR。为提高PTS算法抑制PAPR的能力,提出了一种基于改进的灰狼优化(improved grey wolf optimizer,IGWO)算法的PTS算法,即IGWO-PTS算法,以适应离散组合优化问题并获得更优的子块划分方案,从而获得更好的PAPR抑制能力。推导证明了当相位旋转因子集合元素具有旋转对称性时,相位旋转因子组合空间可以收缩为原来的1 K(K为集合中元素个数),极大程度上降低了系统复杂度。仿真实验表明,IGWO-PTS算法相对于传统算法具有更好的PAPR抑制性能,并且在星地高动态场景下可以保持良好的传输可靠性。
文摘为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。
文摘为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。