期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
星地场景下OTFS系统的一种峰均比抑制算法
1
作者 宋强健 陈雨濛 朱立东 《电信科学》 北大核心 2025年第5期60-71,共12页
正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(p... 正交时频空(orthogonal time frequency space,OTFS)调制在高多普勒环境下可实现可靠通信,适用于卫星通信等高动态场景。然而,其峰值与平均功率比(peak-to-average power ratio,PAPR)易超出功放线性范围,导致非线性失真。部分传输序列(partial transfer sequence,PTS)算法通过对数据符号分块再选取合适的旋转因子可以抑制PAPR。为提高PTS算法抑制PAPR的能力,提出了一种基于改进的灰狼优化(improved grey wolf optimizer,IGWO)算法的PTS算法,即IGWO-PTS算法,以适应离散组合优化问题并获得更优的子块划分方案,从而获得更好的PAPR抑制能力。推导证明了当相位旋转因子集合元素具有旋转对称性时,相位旋转因子组合空间可以收缩为原来的1 K(K为集合中元素个数),极大程度上降低了系统复杂度。仿真实验表明,IGWO-PTS算法相对于传统算法具有更好的PAPR抑制性能,并且在星地高动态场景下可以保持良好的传输可靠性。 展开更多
关键词 峰值与平均功率比 部分传输序列算法 改进的灰狼优化算法 空间域收缩 正交时频空
在线阅读 下载PDF
一种无人巡航船遍历多目标点的路径规划算法研究 被引量:5
2
作者 于家斌 陈志豪 +3 位作者 邓维 许继平 赵峙尧 王小艺 《计算机工程与科学》 CSCD 北大核心 2023年第5期840-848,共9页
针对无人巡航船遍历多目标点的路径规划问题,提出了一种混合的多目标点路径规划算法。首先,将多目标点路径规划问题转化为旅行商问题,并采用改进的灰狼优化算法规划出多目标点的最优巡航顺序。针对传统灰狼优化算法忽略环境因素的缺陷,... 针对无人巡航船遍历多目标点的路径规划问题,提出了一种混合的多目标点路径规划算法。首先,将多目标点路径规划问题转化为旅行商问题,并采用改进的灰狼优化算法规划出多目标点的最优巡航顺序。针对传统灰狼优化算法忽略环境因素的缺陷,通过在适应度函数中引入环境影响因子以反映障碍物和未知区域对路径规划的影响。然后,在上述规划好的多目标点巡航顺序的基础上,利用A*算法结合改进的人工势场法完成各个目标点之间的路径规划。针对传统人工势场法的目标不可达问题,通过优化斥力势场函数来解决。最后,分别在普通环境和复杂环境中与另外2种算法进行了仿真实验对比。实验结果分析表明,提出的算法是有效的,能够有效缩短路径规划时间,降低距离成本。 展开更多
关键词 无人巡航船 多目标点路径规划 改进的灰狼优化算法 A*算法 改进的人工势场法
在线阅读 下载PDF
基于Adaboost算法结合DEGWO-SVM的财务困境预测 被引量:4
3
作者 朱昶胜 田慧星 冯文芳 《兰州理工大学学报》 CAS 北大核心 2021年第6期100-107,共8页
针对支持向量机(SVM)在企业财务困境预测研究中存在参数选择困难、分类准确率低的问题,提出了一种新的Adaboost-DEGWO-SVM组合模型.首先,通过对2017年全部A股上市公司的财务数据进行数据预处理,提取1∶1的困境公司(ST)和正常公司组成建... 针对支持向量机(SVM)在企业财务困境预测研究中存在参数选择困难、分类准确率低的问题,提出了一种新的Adaboost-DEGWO-SVM组合模型.首先,通过对2017年全部A股上市公司的财务数据进行数据预处理,提取1∶1的困境公司(ST)和正常公司组成建模数据集;然后,利用差分进化算法(DE)改进灰狼优化算法(GWO)来提高其全局搜索能力,以解决灰狼算法易陷入局部最优的问题,从而实现对SVM参数c和γ的寻优;最后,通过Adaboost算法提高了DEGWO-SVM模型的分类能力.实验结果表明,Adaboost-DEGWO-SVM组合预测模型具有明显的困境预测优势,与DEGWO-SVM相比,分类准确率提高了4.34%,Ⅰ类错误和Ⅱ类错误分别降低了0.0435;与单一SVM相比,分类准确率提高了13.04%,Ⅰ类错误、Ⅱ类错误分别降低了0.1304、0.1305,是一种潜在的企业财务困境预测方法. 展开更多
关键词 困境预测 支持向量机 改进的灰狼优化算法 ADABOOST算法
在线阅读 下载PDF
融合能量熵编码和分类模型的牵引电机故障诊断 被引量:6
4
作者 张坤鹏 李昊 +2 位作者 安春兰 杨辉 张志超 《铁道学报》 EI CAS CSCD 北大核心 2023年第9期64-73,共10页
针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故... 针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故障属性知识编码的故障特征矩阵;为消除牵引电机故障样本少、非线性模式识别对精确诊断的影响,提出一种改进的灰狼优化算法(IGWO)对支持向量机分类SVM模型参数进行辨识,通过对多类故障准确识别率寻优实现对牵引电机状态预测。在高速列车牵引系统半实物仿真平台进行优化模型对比试验,通过对故障诊断指标分析可知,能量熵编码与IGWO-SVM融合方案可以很好地识别牵引电机故障。 展开更多
关键词 高速列车牵引电机 电磁转矩能量熵编码 改进的灰狼优化算法 分类优化模型 多类故障准确识别率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部