期刊文献+
共找到342篇文章
< 1 2 18 >
每页显示 20 50 100
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
1
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值 SMO算法
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
2
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
基于改进核模糊C均值类间极大化聚类算法 被引量:4
3
作者 李斌 狄岚 +1 位作者 王少华 于晓瞳 《计算机应用》 CSCD 北大核心 2016年第7期1981-1987,共7页
传统的核聚类仅考虑了类内元素的关系而忽略了类间的关系,对边界模糊或边界存在噪声点的数据集进行聚类分析时,会造成边界点的误分问题。为解决上述问题,在核模糊C均值(KFCM)聚类算法的基础上提出了一种基于改进核模糊C均值类间极大化聚... 传统的核聚类仅考虑了类内元素的关系而忽略了类间的关系,对边界模糊或边界存在噪声点的数据集进行聚类分析时,会造成边界点的误分问题。为解决上述问题,在核模糊C均值(KFCM)聚类算法的基础上提出了一种基于改进核模糊C均值类间极大化聚类(MKFCM)算法。该算法考虑了类内元素和类间元素的联系,引入了高维特征空间的类间极大惩罚项和调控因子,拉大类中心间的距离,使得边界处的样本得到了较好的划分。在各模拟数据集的实验中,该算法在类中心的偏移距离相对其他算法均有明显降低。在人造高斯数据集的实验中,该算法的精度(ACC)、归一化互信息(NMI)、芮氏指标(RI)指标分别提升至0.913 2,0.757 5,0.913 8。 展开更多
关键词 模糊c均值 间极大惩罚项 模糊边界
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:2
4
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
核模糊C均值算法的聚类有效性研究 被引量:28
5
作者 普运伟 金炜东 +1 位作者 朱明 胡来招 《计算机科学》 CSCD 北大核心 2007年第2期207-210,229,共5页
针对核模糊C均值聚类(Kernelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β... 针对核模糊C均值聚类(Kernelized Fuzzy C-Means,KFCM)算法的有效性评价,以核非线性映射为工具,将原空间中的六个著名有效性指标推广到高维特征空间,得到其对应的核化形式,并通过数值比较实验考察这些核化指标的性能及其对高斯核宽度β和模糊指数m的敏感特性。结果表明,在所考察的指标中,著名的Xie-Beni指标VXB及其改进指标VK的核化版本具有最好的性能和可靠性,可优先作为KFCM聚类算法的有效性准则。 展开更多
关键词 模糊c均值 有效性 最佳
在线阅读 下载PDF
一种核模糊C均值聚类算法及其应用 被引量:30
6
作者 康家银 纪志成 龚成龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第7期1657-1663,共7页
图像分割在许多医学成像应用中起着重要的作用。本文提出了一种新的用于图像分割的聚类算法。该算法通过利用核距离修改FCM-AWA算法中的目标函数而实现,即用核距离替代FCM-AWA中的欧氏距离,相应的得到核FCM-AWA聚类算法——KAWA-FCM聚... 图像分割在许多医学成像应用中起着重要的作用。本文提出了一种新的用于图像分割的聚类算法。该算法通过利用核距离修改FCM-AWA算法中的目标函数而实现,即用核距离替代FCM-AWA中的欧氏距离,相应的得到核FCM-AWA聚类算法——KAWA-FCM聚类算法。利用该算法进行合成和真实图像分割的实验结果表明,当图像含有噪声时,与FCM-AWA算法相比,HAWA-FCM算法具有更好的性能。此外,基于该算法进行了牙菌斑量化的实验,实验结果表明,相对于利用菌斑指数的量化结果,基于KAWA-FCM的量化结果具有定量、自动和客观等特点。 展开更多
关键词 模糊c均值 模糊 方法 牙菌斑 分割 量化
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
7
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值算法 FcM算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
改进混合蛙跳算法优化的产品族模糊C均值聚类设计方法 被引量:4
8
作者 崔文华 刘晓冰 +1 位作者 王伟 王介生 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第5期760-765,共6页
研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断... 研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断算子和拼接算子用来对个体进行重新组合而形成新个体,采用ISODATA迭代算法进行局部寻优.通过对纸币清分机进行的产品族设计的仿真研究,表明所提方法为产品族模块化设计提供了定量数学分析和快速配置的理论依据. 展开更多
关键词 纸币清分机 产品族 产品平台 混合蛙跳算法 模糊c均值
在线阅读 下载PDF
模糊C均值聚类图像分割的改进遗传算法研究 被引量:15
9
作者 杨凯 蒋华伟 《计算机工程与应用》 CSCD 北大核心 2009年第33期179-182,共4页
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一... 基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 展开更多
关键词 模糊c均值 模糊c均值(FcM)算法 遗传算法
在线阅读 下载PDF
改进的模糊C均值聚类算法和霍夫变换在榛子仁缺陷检测中的应用 被引量:3
10
作者 张冬妍 张瑞 +1 位作者 韩睿 曹军 《东北林业大学学报》 CAS CSCD 北大核心 2021年第6期80-83,95,共5页
以榛子仁为检测样本,采用模糊C均值聚类(FCM)算法进行图像分割;利用飞蛾扑火(MFO)算法改进其目标函数;利用函数对个体样本边缘提取,标记边缘拐点位置,计算拐点个数;对边缘图像进行霍夫(Hough)变换的椭圆曲线拟合,标记并输出饱满籽粒个数... 以榛子仁为检测样本,采用模糊C均值聚类(FCM)算法进行图像分割;利用飞蛾扑火(MFO)算法改进其目标函数;利用函数对个体样本边缘提取,标记边缘拐点位置,计算拐点个数;对边缘图像进行霍夫(Hough)变换的椭圆曲线拟合,标记并输出饱满籽粒个数;依据试验数据,分析应用改进的模糊C均值聚类算法和霍夫变换对榛子仁缺陷检测的效果。结果表明:改进的模糊C均值聚类算法和霍夫变换,可以准确有效地对饱满、干瘪、霉斑、虫蛀、腐烂的5种榛子仁中的缺陷籽粒进行识别检测,提高榛子仁加工过程中的分拣效率。 展开更多
关键词 榛子仁 缺陷检测 改进模糊c均值算法 图像分割 霍夫变换
在线阅读 下载PDF
利用空间信息的核模糊C均值聚类算法 被引量:3
11
作者 王丹丹 李彬 陈武凡 《计算机工程与应用》 CSCD 北大核心 2007年第33期82-83,111,共3页
模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻... 模糊聚类,特别是模糊C均值聚类算法(FCM)广泛地运用到图像的分割中。但是传统的算法未对数据对特征进行优化,亦未考虑图像的空间信息,对噪声图像分割不理想。在FCM目标函数中引入核函数,用内核引导距离代替传统的欧式距离,同时考虑到邻近象素的影响,增加了空间约束项,提出了利用空间信息的核FCM算法。通过对模拟图和仿真脑部MR图像的分割实验证明,该算法可以有效的分割含有噪声图像。 展开更多
关键词 图像分割 方法 模糊c均值算法 图像的空间信息
在线阅读 下载PDF
核模糊C均值聚类算法优选BDS-3三频组合观测值 被引量:5
12
作者 田睿 范祥祥 +2 位作者 戴影 孙宪兵 董绪荣 《系统工程与电子技术》 EI CSCD 北大核心 2020年第3期686-697,共12页
目前对全球导航卫星系统(global navigation satellite system,GNSS)三频组合观测值优选的研究,主要集中在全球定位系统(global positioning system,GPS)和北斗二号(beidou navigation satellite system,BDS-2)上,对BDS-3的研究相对较... 目前对全球导航卫星系统(global navigation satellite system,GNSS)三频组合观测值优选的研究,主要集中在全球定位系统(global positioning system,GPS)和北斗二号(beidou navigation satellite system,BDS-2)上,对BDS-3的研究相对较少。为克服以往聚类优选算法中存在的仅适用于类球形簇、聚类数目和初始聚类中心的确定主观性强、对离群点敏感、易陷于局部最优等不足,提出一种改进的核模糊C均值聚类算法,引入核函数与抑制离群点的新距离度量,基于多类广义核极化准则优化核参数,用改进爬山法确定聚类数目与初始聚类中心。然后,以模糊C均值聚类算法为对照进行了对比实验,在短、长两种基线下分别解算组合模糊度。通过对优选所得代表性组合的模糊度固定成功率进行对比分析,验证了该算法的可行性与算法改进的有效性。 展开更多
关键词 三频组合观测值 改进的核模糊c均值聚类算法 矩阵变换法 模糊度固定
在线阅读 下载PDF
粒子群高斯诱导核模糊C均值聚类算法 被引量:5
13
作者 文传军 詹永照 《科学技术与工程》 北大核心 2018年第8期78-84,共7页
为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊C均值聚类算法(PSO Gauss-induced kernel fuzzy C-means clustering algorithm,PSO-GIKFCM)。首先将高斯核函数应用于模糊C聚类算法(FCM)目标函数,得到高... 为了避免陷入梯度法局部极值以提升模糊聚类算法聚类性能,提出PSO高斯诱导核模糊C均值聚类算法(PSO Gauss-induced kernel fuzzy C-means clustering algorithm,PSO-GIKFCM)。首先将高斯核函数应用于模糊C聚类算法(FCM)目标函数,得到高斯核模糊聚类目标函数。然后在高斯核特征空间和输入空间利用梯度法得到两空间聚类中心,将特征空间聚类中心与样本的内积核矩阵代入输入空间聚类中心,从而得到高斯诱导核的聚类中心。最后在解空间利用粒子群算法(PSO)对模糊隶属度进行寻优估计,并结合目标函数和聚类中心构成PSO-GIKFCM参数估计迭代流程。PSO-GIKFCM算法基于粒子群算法保证其收敛性,聚类中心仅为模糊隶属度的函数,PSO生物进化算法在解空间全局寻找优解,且将模糊指标扩展为大于0的情况。通过仿真实验验证了所提出算法的有效性。 展开更多
关键词 模糊c均值(FcM) 方法 高斯 粒子群(PSO) 中心
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
14
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊c有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
15
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊c均值(FcM)算法 无监督学习算法
在线阅读 下载PDF
模糊C均值聚类算法在自动供送装置改进设计中的应用 被引量:1
16
作者 魏娜 辛向阳 《机械设计》 CSCD 北大核心 2016年第12期105-108,共4页
为进一步减轻工人劳动强度,使供送装置的供送参数(如供送高度、供送距离等)设计更符合工人实际操作行为习惯,针对用户的需求差异,采用模糊C均值聚类算法,将目标人群的相关特征参数进行分类,根据聚类结果对相关供送参数进行改进,以达到... 为进一步减轻工人劳动强度,使供送装置的供送参数(如供送高度、供送距离等)设计更符合工人实际操作行为习惯,针对用户的需求差异,采用模糊C均值聚类算法,将目标人群的相关特征参数进行分类,根据聚类结果对相关供送参数进行改进,以达到更好的供送效果;以涡流纺细纱机中的纱筒供送装置为例,结合女操作工的身高特征参数,对纱筒供送高度进行改进,提出两个供送高度的设计方案,对减轻工人劳动强度均有较为明显的效果。采用模糊C均值聚类算法进行聚类分析可为供送装置的相关供送参数改进提供有效途径。 展开更多
关键词 工业设计 自动供送装置 模糊c均值算法 人机工程 改进设计 涡流坊细纱机
在线阅读 下载PDF
改进的模糊C均值聚类算法及其在海底热液硫化物组分分析中的应用 被引量:4
17
作者 田赤英 张旭男 +2 位作者 宋士吉 李家彪 李小虎 《海洋学研究》 2010年第4期22-28,共7页
在聚类分析中,模糊C均值(FCM)聚类算法有着广泛的应用。在实际应用中,该算法存在着很多缺陷,如最优聚类数目的确定完全依赖于数据的数目,算法易收敛到局部极值点以及收敛速度慢等。本文针对这些缺陷提出了2点改进方法:首先,利用减法聚... 在聚类分析中,模糊C均值(FCM)聚类算法有着广泛的应用。在实际应用中,该算法存在着很多缺陷,如最优聚类数目的确定完全依赖于数据的数目,算法易收敛到局部极值点以及收敛速度慢等。本文针对这些缺陷提出了2点改进方法:首先,利用减法聚类确定聚类数目的范围,提出一个新的聚类有效性指标函数,实现最优聚类数目的自适应确定。在此基础上,提出了基于粒子群(PSO)的模糊C均值混合聚类算法,以解决已有原始FCM聚类算法容易陷入局部极小点和收敛速度慢的问题。仿真测试结果表明:改进后的FCM聚类算法能够有效减少迭代次数,并以较快的收敛速度获得更加准确的聚类结果。最后,将改进的FCM聚类算法应用到冲绳海槽热液硫化物矿物组分分析中,准确地反映出了其矿物化学组分中主要金属元素的分布特征及矿石分类状况。 展开更多
关键词 有效性 粒子群算法 模糊c均值算法 海底热液硫化物 组分
在线阅读 下载PDF
基于蚁群算法的模糊C均值聚类的改进研究 被引量:6
18
作者 高晋凯 侯文 +1 位作者 杨冰倩 王贇贇 《现代雷达》 CSCD 北大核心 2016年第11期30-34,39,共6页
在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。... 在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。该算法利用了蚁群算法全局优化特征以及较强鲁棒性的特点,将通过蚁群算法得到的聚类中心及个数应用到传统FCM算法中,弥补了传统FCM聚类算法的不足。该算法对图像进行分块处理,并引入多尺度梯度,提高了图像分割的准确性,最后通过实验验证了该算法的有效性及实用性。 展开更多
关键词 图像分割 蚁群算法 模糊c均值 梯度
在线阅读 下载PDF
改进的模糊C均值的增量聚类算法 被引量:4
19
作者 吴佳 罗可 《计算机工程与应用》 CSCD 北大核心 2011年第23期141-142,207,共3页
针对FCM算法的缺点,提出了一种基于改进的FCM的增量式聚类方法。该算法首先对模糊C均值算法进行加权,并将权系数归一化,然后将改进的算法与增量式聚类算法结合。改进的方法既提高了FCM算法的性能,避免了FCM算法的缺陷,并能够实现增量式... 针对FCM算法的缺点,提出了一种基于改进的FCM的增量式聚类方法。该算法首先对模糊C均值算法进行加权,并将权系数归一化,然后将改进的算法与增量式聚类算法结合。改进的方法既提高了FCM算法的性能,避免了FCM算法的缺陷,并能够实现增量式聚类,避免了大量的重复计算,并且不受孤立点的影响。实验表明该算法的有效性。 展开更多
关键词 分析 模糊c均值算法 增量式
在线阅读 下载PDF
改进模糊C均值聚类算法及锂电池配组应用 被引量:2
20
作者 付媛 全书海 《河南科技大学学报(自然科学版)》 CAS 北大核心 2017年第4期43-48,共6页
在锂电池化成管理的智能配组过程中,当处理大规模数据或锂电池结构较复杂时,速度和准确度不高。因此,提出了一种基于遗传算法与密度加权的改进模糊C均值聚类算法。首先,由遗传算法优化得到初始聚类中心。然后,将样本对象的高斯密度函数... 在锂电池化成管理的智能配组过程中,当处理大规模数据或锂电池结构较复杂时,速度和准确度不高。因此,提出了一种基于遗传算法与密度加权的改进模糊C均值聚类算法。首先,由遗传算法优化得到初始聚类中心。然后,将样本对象的高斯密度函数作为其权值,并采用Xie-Beni有效性指标改进目标函数。将改进的算法通过标准测试数据集Iris和锂电池配组进行实验验证。验证结果表明:本文算法改善了聚类效果,与模糊C均值聚类算法相比,锂电池配组的正确率提高了0.8%,并且计算迭代次数从14次降低到8次。 展开更多
关键词 模糊c均值算法 遗传算法 高斯密度加权 Xie-Beni指标 锂电池配组
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部