期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
采用改进的集总平均经验模态分解法的内燃机气门拍击激励与燃烧激励分离的研究 被引量:3
1
作者 郑旭 郝志勇 +1 位作者 金阳 卢兆刚 《汽车工程》 EI CSCD 北大核心 2011年第11期930-936,共7页
提出了一种改进的集总平均经验模态分解(M-EEMD)方法,并阐述了其基本原理。通过仿真试验,证实了M-EEMD不仅能够很好地解决经验模态分解(EMD)中模态混叠问题,而且能够抑制集总平均经验模态分解(EEMD)的噪声残余和模态分裂等问题。作为实... 提出了一种改进的集总平均经验模态分解(M-EEMD)方法,并阐述了其基本原理。通过仿真试验,证实了M-EEMD不仅能够很好地解决经验模态分解(EMD)中模态混叠问题,而且能够抑制集总平均经验模态分解(EEMD)的噪声残余和模态分裂等问题。作为实例,对一个4缸4冲程内燃机气缸盖罩的振动信号进行M-EEMD分解,并对分解得到的IMF分量进行时频分析。结果表明M-EEMD能够成功地将内燃机气门拍击引起的机械激励成分与燃烧激励成分分离。 展开更多
关键词 内燃机 气门拍击 燃烧 激励分离 改进的集总平均经验模态分解
在线阅读 下载PDF
一种基于总体平均经验模态分解的线谱提取方法 被引量:2
2
作者 刘千里 《舰船电子工程》 2020年第6期40-42,88,共4页
为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船... 为有效提取目标辐射噪声线谱,采用了一种基于集成经验模态分解(EEMD)的自适应线谱及连续谱提取方法。对舰船辐射噪声频谱进行集成经验模态分解,然后选取合适的IMF进行线谱的提取,使用余量和剩余的IMF进行连续谱的准确估计。通过对舰船辐射噪声仿真信号分析,该方法能有效地提取舰船辐射噪声的线谱,与小波分析方法进行对比分析后表明,EEMD对信号的分析比小波分析有一定的优越性,而且因EEMD能够突出信号局部特征,对线谱能量有一定的增益。 展开更多
关键词 总体平均经验模态分解 辐射噪声 小波变换 线谱
在线阅读 下载PDF
基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 被引量:8
3
作者 周红敏 赵事成 +3 位作者 赵文清 王双 郝广伟 张宪堂 《振动与冲击》 EI CSCD 北大核心 2023年第10期74-81,共8页
爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始... 爆破振动信号受现场条件限制,多为复杂含噪信号,对降噪方法的性能提出更高要求。为了获得真实振动特征,建立了一种基于改进的总体平均经验模态分解(modified ensemble empirical mode decomposition,MEEMD)的联合去噪方法。首先,将原始信号进行MEEMD分解得到本征模态分量(intrinsic mode function,IMF),结合相关系数和样本熵(sample entropy,SE)-Hurst指数进行IMF分类;然后,针对含噪IMF分量中的残留噪声,使用最小均方(least mean square,LMS)自适应滤波进行降噪,达到信号去噪的目的。算法对比结果表明:在仿真试验中,MEEMD-LMS相较互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)等方法表现出更优的降噪性能;在隧道掘进爆破的实例分析中,MEEMD-LMS相较MEEMD对高频噪声的降噪效果更好,低频段频谱更清晰,具备良好的适用性。 展开更多
关键词 隧道掘进 爆破振动 改进的总体平均经验模态分解(meemd) 最小均方(LMS)滤波 本征模态分量(IMF)评价
在线阅读 下载PDF
基于变分模态分解算法的单通道无线电混合信号分离 被引量:9
4
作者 江春冬 王景玉 +2 位作者 杜太行 郝静 龙超 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第12期1618-1626,共9页
针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解... 针对复杂电磁环境下单通道无线电混合信号分离困难及分离精度不高的问题,提出2次使用变分模态分解(VMD)算法对单通道无线电混合信号进行分离的方法.首先利用VMD算法对单通道无线电混合信号进行粗分离,并将VMD算法与总体平均经验模态分解(EEMD)算法进行对比,得出前者分离出的信号在时域、频域及信噪比和相似系数等方面均比后者取得的对应结果效果好的结论.然后对VMD算法的参数利用改进的量子粒子群优化算法进行优化,确定所需分量个数和惩罚因子的值.最后对VMD算法分离后的信号使用参数优化后的VMD算法进行细分离.数值模拟和实验信号分析结果均表明,再次分离后所得到的信号精度较利用VMD算法对单通道无线电混合信号进行粗分离时更高,证明了所提算法对单通道无线电混合信号分离的有效性. 展开更多
关键词 变分模态分解 总体平均经验模态分解 改进的量子粒子群优化
在线阅读 下载PDF
基于WPES与MEEMD的船用主机振动研究 被引量:1
5
作者 吴刚 江国栋 +1 位作者 闫国华 陈晓东 《舰船科学技术》 北大核心 2024年第4期103-108,共6页
为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工... 为揭示船用长冲程低速柴油机健康状态下的振动特征,采用小波包能量谱(Wavelet Packet Energy Spectrum, WPES)和改进的总体平均经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)结合的特征提取方法,对典型推进工况下低速机的表面振动信号进行3层小波包分解和重构。通过对能量占比较大的节点采用MEEMD方法进行分解,获得IMF1分量频谱。研究结果表明,在40%以下的较低发动机负荷时,各单次燃烧循环的振动波动较小,振动幅值基本一致。提升至50%以上发动机负荷时,燃烧引起振动波动明显增强。50%工况下,中高频能量占总能量的41.51%,为主要振动源。 展开更多
关键词 船用低速柴油机 小波包能量谱 改进的总体平均经验模态分解 振动特性 状态评估
在线阅读 下载PDF
补充集成极值加权模态分解及其应用 被引量:1
6
作者 苏缪涎 郑近德 潘紫微 《噪声与振动控制》 CSCD 2020年第3期77-83,共7页
极值加权模态分解(Extreme-point weighted mode decomposition,简称EWMD)是一种新的自适应信号分解方法,通过对相邻三个极值点加权平均后进行曲线拟合,优化均值曲线的构造方式,改善了分解能力,但EWMD仍存在模态混叠现象。基于噪声辅助... 极值加权模态分解(Extreme-point weighted mode decomposition,简称EWMD)是一种新的自适应信号分解方法,通过对相邻三个极值点加权平均后进行曲线拟合,优化均值曲线的构造方式,改善了分解能力,但EWMD仍存在模态混叠现象。基于噪声辅助分解思想,提出了补充集成极值加权模态分解(Complementary ensemble extreme-point weighted mode decomposition,简称CEEWMD)。借助高斯白噪声均匀分布的特征,使信号在尺度上具有连续性,CEEWMD能够有效地抑制模态混叠和实现分解的完备性。通过仿真信号和实测信号分析,将CEEWMD与EWMD和总体平均经验模态分解进行对比,结果验证了其在分解性能和抑制模态混叠等方面的优越性。 展开更多
关键词 故障诊断 极值加权模态分解 总体平均经验模态分解 模态混叠 滚动轴承
在线阅读 下载PDF
部分集成局部特征尺度分解:一种新的基于噪声辅助数据分析方法 被引量:18
7
作者 郑近德 程军圣 杨宇 《电子学报》 EI CAS CSCD 北大核心 2013年第5期1030-1035,共6页
局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)是最近提出的一种类似于经验模态分解(EmpiricalMode Decomposition,EMD)的非平稳信号分析方法.为解决LCD方法的模态混淆问题,论文首先提出了基于噪声辅助分析的集成局... 局部特征尺度分解(Local Characteristic-Scale Decomposition,LCD)是最近提出的一种类似于经验模态分解(EmpiricalMode Decomposition,EMD)的非平稳信号分析方法.为解决LCD方法的模态混淆问题,论文首先提出了基于噪声辅助分析的集成局部特征尺度分解方法(Ensemble LCD,ELCD).然而,ELCD有类似于总体平均经验模态分解(En-semble EMD,EEMD)和互补总体平均经验模态分解(Complementary,CEEMD)的固有缺陷,在此基础上,同时结合最近提出的随机性检测方法——排列熵(Permutation Entropy,PE),论文提出了部分集成局部特征尺度分解(Partly EnsembleLCD,PELCD)方法.仿真数据分析表明,论文提出的PELCD方法不仅能够有效地抑制LCD分解的模态混淆,而且在抑制伪分量的产生以及分量精确性等方面要优于CEEMD和ELCD方法. 展开更多
关键词 局部特征尺度分解 模态混淆 排列熵 部分集成局部特征尺度分解 总体平均经验模态分解
在线阅读 下载PDF
基于MEEMD的内燃机辐射噪声贡献 被引量:15
8
作者 郑旭 郝志勇 +1 位作者 金阳 卢兆刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期954-960,共7页
为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不... 为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不仅能够抑制模态混叠问题,而且能够解决模态分裂等问题.采用MEEMD方法对内燃机振动成分对辐射噪声的贡献进行研究,以一个4缸4冲程内燃机为例,对标定工况下的缸盖罩振动信号和缸盖罩近场噪声信号进行MEEMD分解,并对分解得到的本征模态函数(IMF)进行时频分析,研究对辐射噪声贡献大的振动成分的来源.研究结果表明,通过MEEMD方法能够得到对内燃机辐射噪声贡献大的振动成分,并且准确确定其来源. 展开更多
关键词 内燃机 振动信号 噪声信号 改进的集总平均经验模态分解 时频分析
在线阅读 下载PDF
改进EEMD方法及混沌降噪应用研究 被引量:4
9
作者 位秀雷 林瑞霖 +1 位作者 刘树勇 杨庆超 《振动与冲击》 EI CSCD 北大核心 2017年第17期35-41,共7页
在总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)降噪过程中,对本征模态分量(Intrinsic Mode Function,IMF)的有效处理一直是影响降噪效果的关键。为此,提出一种基于改进EEMD的去噪方法。基于"3σ"法则... 在总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)降噪过程中,对本征模态分量(Intrinsic Mode Function,IMF)的有效处理一直是影响降噪效果的关键。为此,提出一种基于改进EEMD的去噪方法。基于"3σ"法则和奇异值分解(Singular Value Decomposition,SVD)提取第一个IMF分量中有用信号细节。利用连续均方误差准则对剩余IMF分量进行高低频区分,分别使用SVD和S-G算法提取高低频分量的有用信号,可以有效避免了高频部分有用信号的流失,同时剔除低频分量中的部分噪声,克服了EEMD去噪时IMFs难以有效处理的不足。为了验证该方法的有效性,进行了数字仿真与双势阱混沌振动试验,结果表明,该方法的降噪效果优于小波加权和EEMD去噪方法。 展开更多
关键词 总体平均经验模态分解 混沌信号 奇异值分解 降噪 S-G滤波
在线阅读 下载PDF
一种基于声阵列信息融合及改进EEMD的信号降噪方法 被引量:9
10
作者 邸忆 顾晓辉 龙飞 《振动与冲击》 EI CSCD 北大核心 2017年第15期133-141,共9页
针对声阵列多通道信号的去噪问题,提出一种基于多传声器信息融合辅助的改进总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)的被动声信号去噪方法。对标准EEMD进行改进,通过多通道信号频谱分析,选取多传声器信号最... 针对声阵列多通道信号的去噪问题,提出一种基于多传声器信息融合辅助的改进总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)的被动声信号去噪方法。对标准EEMD进行改进,通过多通道信号频谱分析,选取多传声器信号最小有效频率作为各通道信号EEMD分解的筛选截止频率,采用改进的EEMD算法将原始信号快速分解为完备的IMF分量,有效抑制了模态混叠现象并提高信号分解效率;引入声阵列时延矢量封闭准则(Time Delay Vector Close Rule,TDVCR)概念,结合多传声器数据一致性融合及信号相关性理论,对各IMF分量进行相应的权重计算,再由已确定权值对各IMF分量进行加权重构得到去噪信号;最终通过半实物仿真试验以及同传统EMD去噪的比较验证了该算法在多通道信号去噪中的有效性和实用性。 展开更多
关键词 声阵列 信号去噪 总体平均经验模态分解 数据一致性融合 时延矢量封闭准则
在线阅读 下载PDF
自适应掩膜信号集成局部特征尺度分解及其应用 被引量:2
11
作者 郑近德 潘海洋 +2 位作者 童靳于 刘庆运 丁克勤 《电子学报》 EI CAS CSCD 北大核心 2020年第10期2060-2070,共11页
局部特征尺度分解(LCD)是为克服经验模态分解(EMD)中均值曲线构造的不足而提出的一种自适应信号分解方法,已被应用于机械故障诊断领域.但LCD存在与EMD类似的模态混叠问题,为此,基于均匀相位差掩膜信号构造,提出了自适应掩膜信号集成局... 局部特征尺度分解(LCD)是为克服经验模态分解(EMD)中均值曲线构造的不足而提出的一种自适应信号分解方法,已被应用于机械故障诊断领域.但LCD存在与EMD类似的模态混叠问题,为此,基于均匀相位差掩膜信号构造,提出了自适应掩膜信号集成局部特征尺度分解(AMSELCD),该方法不仅能够将一个复杂信号自适应地分解为若干个本征模态函数和一个剩余项之和,而且能够有效地解决LCD的模态混叠现象.通过仿真信号分析,将AMSELCD与现有多种抑制模态分解方法进行了对比,结果表明了所提方法的有效性和优越性.最后,针对滚动轴承和转子碰摩故障振动信号的调制特征,将所提AMSELCD方法应用于转子碰摩和滚动轴承的故障诊断,对比和实验分析结果进一步验证了所提方法的有效性和优越性. 展开更多
关键词 经验模态分解 局部特征尺度分解 总体平均经验模态分解 模态混叠 故障诊断
在线阅读 下载PDF
基于多尺度分解的微地震噪声压制与初至检测方法研究 被引量:8
12
作者 唐杰 温雷 +1 位作者 李聪 戚瑞轩 《石油物探》 EI CSCD 北大核心 2019年第4期517-523,共7页
地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提... 地面微地震数据信噪比很低,严重影响了初至拾取的精度及反演结果的可靠性。为此,对基于改进的完备总体经验模态分解(ICEEMD)的去噪方法与初至检测方法进行了研究,首先利用ICEEMD将非平稳信号分解为一系列相对平稳的固有模态函数,然后提出了一种自适应间隔阈值去除固有模态中噪声成分的方法,最后将去噪后的分量相加重构去噪后的信号。应用Hilbert变换计算每个分量的振幅,然后计算持续能量比,利用给定的阈值找到局部最大值,计算得到高能量的地震信号的到达时间。理论模型数据及实际微地震资料的处理结果表明,去噪后数据的信噪比得到了改进,相对于传统的空间域滤波与变换域阈值去噪,该去噪方法具有显著的优势及较好的应用价值,与Hilbert变换结合的初至检测方法可以有效地检测微地震信号初至。 展开更多
关键词 微地震 随机噪声压制 改进的完备总体经验模态分解 固有模态函数 自适应间隔阈值 重构 初至检测
在线阅读 下载PDF
基于MEEMD和二代小波阈值的表面肌电信号去噪处理 被引量:7
13
作者 武壮 王勇 肖飞云 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第7期869-874,908,共7页
表面肌电(surface electromyogram,sEMG)信号能够反映神经肌肉的相关活动信息,被广泛应用于假肢控制、临床医学等领域,而获取干净的sEMG信号是精确地解释和应用信号的先决条件。为了消除混杂在sEMG信号中的噪声,文章提出了一种基于改进... 表面肌电(surface electromyogram,sEMG)信号能够反映神经肌肉的相关活动信息,被广泛应用于假肢控制、临床医学等领域,而获取干净的sEMG信号是精确地解释和应用信号的先决条件。为了消除混杂在sEMG信号中的噪声,文章提出了一种基于改进的经验模态分解(modified ensemble empirical mode decomposition,MEEMD)与二代小波改进阈值函数相结合的sEMG信号去噪方法。对含噪的sEMG信号进行MEEMD分解,再对高频的本证模态分量(intrinsic mode function,IMF)进行二代小波改进阈值函数去噪,将处理后的高频IMF分量和低频IMF分量以及残余信号进行重构,重构后的信号即为去噪sEMG信号。仿真结果表明,基于MEEMD与二代小波改进阈值函数方法的去噪性能指标高于其他方法;实验结果表明,该方法结合了MEEMD和二代小波的优点,能够很好地消除噪声,且能最大限度地保留信号中的有用信息。 展开更多
关键词 表面肌电(sEMG)信号 去噪 改进的经验模态分解(meemd) 二代小波
在线阅读 下载PDF
基于改进EMD算法的水下潜艇磁异常信号处理分析 被引量:2
14
作者 孙华庆 王丹 《舰船电子工程》 2018年第5期146-150,共5页
潜艇水下磁异常探测中关键环节是对信号的检测处理。针对传统EMD算法处理磁异常信号存在的模态混叠现象,论文仿真了经典磁偶极子模型对潜艇磁异常信号,利用改进的EMD算法对高噪声环境下的仿真信号进行检测,检测结果表明,该方法具有自适... 潜艇水下磁异常探测中关键环节是对信号的检测处理。针对传统EMD算法处理磁异常信号存在的模态混叠现象,论文仿真了经典磁偶极子模型对潜艇磁异常信号,利用改进的EMD算法对高噪声环境下的仿真信号进行检测,检测结果表明,该方法具有自适应强、完备性好的特点,在信号重构过程中能够较好地还原目标信号的时域特性。论文的结果对今后水下潜艇磁异常探测信号检测算法的发展有一定借鉴意义。 展开更多
关键词 潜艇磁异常 磁偶极子模型 模态混叠 总体平均经验模态分解
在线阅读 下载PDF
基于EEMD能量熵和支持向量机的齿轮故障诊断方法 被引量:56
15
作者 张超 陈建军 郭迅 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第3期932-939,共8页
针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮... 针对齿轮振动信号的非平稳特征和现实中难以获得大量典型故障样本的实际情况,提出基于总体平均经验模态分解(EEMD)和支持向量机的齿轮故障诊断方法。通过EEMD方法将非平稳的原始加速度振动信号分解成若干个平稳的本征模函数(IMF);齿轮发生不同的故障时,在不同频带内的信号能量值会发生改变,故可通过计算不同振动信号的EEMD能量熵判断是否发生故障;从包含有主要故障信息的IMF分量中提取出来的能量特征作为输入建立支持向量机,判断齿轮的工作状态和故障类型。实验结果表明:文中提出的方法能有效地应用于齿轮的故障诊断。 展开更多
关键词 总体平均经验模态分解 本征模函数 能量熵 支持向量机 故障诊断
在线阅读 下载PDF
基于CEEMD与TQWT组合方法的爆破振动信号精细化特征提取 被引量:11
16
作者 杨仁树 付晓强 +1 位作者 杨国梁 陈骏 《振动与冲击》 EI CSCD 北大核心 2017年第3期38-45,共8页
针对传统小波在爆破振动信号特征提取和分析方面的局限性,提出了基于CEEMD和TQWT组合的信号精细化特征提取方法。预先设定可调品质因子小波TQWT高、低品质因子参数对CEEMD分解优势分量重组信号进行分解,并引入相对权重因子θ,优化了分... 针对传统小波在爆破振动信号特征提取和分析方面的局限性,提出了基于CEEMD和TQWT组合的信号精细化特征提取方法。预先设定可调品质因子小波TQWT高、低品质因子参数对CEEMD分解优势分量重组信号进行分解,并引入相对权重因子θ,优化了分解过程,实现了爆破振动信号特征的精细化提取。分析结果表明:组合方法对爆破振动信号的分析不依赖于先验小波基的选择,分解过程实现了信号的二次滤波。通过连续小波多尺度三维谱和时频小波脊线对比,说明组合算法分解得到的最佳分析信号可真实反映振动信号的细节信息,时频分辨率更高。该组合方法抑制了杂波分量对信号特征的干扰,可精确地提取复杂环境下的爆破振动信号特征信息。 展开更多
关键词 爆破振动 总体平均经验模态分解 可调品质因子小波变换 能量分布 时频脊线
在线阅读 下载PDF
EEMD在同时消除脉搏血氧检测中脉搏波信号高频噪声和基线漂移中的应用 被引量:20
17
作者 韩庆阳 王晓东 +1 位作者 李丙玉 周鹏骥 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1384-1388,共5页
人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mo... 人体血氧饱和度是基于脉搏波信号测量得到的,然而在脉搏波信号采集的过程中存在着由人体呼吸和仪器本身热噪声等带来的基线漂移和高频噪声,影响人体血氧饱和度的测量精度。因此,该文提出一种总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与基于排列熵(Permutation Entropy,PE)的信号随机性检测相结合的方法,同时消除基线漂移和高频噪声。对脉搏波信号进行EEMD分解,计算分解到得到的内在模式分量的排列熵,选取阈值,分别判断并剔除代表高频噪声和基线漂移的内在模式分量。最后信号重构就得到同时消除高频噪声和基线漂移的脉搏波信号。通过自行研制的测量装置所采集的脉搏波信号进行实验验证,利用信号的频谱和交直流比R评价效果。结果表明:该方法有效地同时消除了脉搏波信号中的高频噪声和基线漂移,这将有利于人体血氧饱和度测量精度的提高。 展开更多
关键词 脉搏波信号 人体血氧饱和度 高频噪声 基线漂移 总体平均经验模态分解 排列熵
在线阅读 下载PDF
基于EEMD与FastICA的损伤异常识别与定位 被引量:13
18
作者 姜绍飞 陈志刚 +2 位作者 沈清华 吴铭昊 麻胜兰 《振动与冲击》 EI CSCD 北大核心 2016年第1期203-209,共7页
为了准确地提取结构损伤异常信息,消除小波奇异值分解时存在需要特定的小波基和分解层数以及经验模态分解(EMD)方法存在诸如虚假模态混叠等问题,提出一种基于改进的总体平均经验模态分解(EEMD)与快速独立分量分析(Fast ICA)相结合的提... 为了准确地提取结构损伤异常信息,消除小波奇异值分解时存在需要特定的小波基和分解层数以及经验模态分解(EMD)方法存在诸如虚假模态混叠等问题,提出一种基于改进的总体平均经验模态分解(EEMD)与快速独立分量分析(Fast ICA)相结合的提取结构损伤特征并进行识别与定位的新方法。首先,通过EEMD对结构动力响应信号进行预处理并用Fast ICA提取出包含损伤信息的特征分量对结构响应异常进行识别和初步定位;然后,计算归一化的源分布向量(NSDV)的最大值,并根据该最大值精确定位结构损伤。最后,通过框架数值算例和试验进行了所提方法的验证,结果表明该算法能够较好地进行结构损伤异常的识别与定位。 展开更多
关键词 总体平均经验模态分解 快速独立分量分析 损伤定位 源分布向量
在线阅读 下载PDF
基于频率截止的EEMD方法研究 被引量:5
19
作者 黄杰 张梅军 +1 位作者 柴凯 陈灏 《振动与冲击》 EI CSCD 北大核心 2015年第8期101-105,共5页
为解决总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)中虚假IMF分量过多问题,提出了一种基于频率截止的EEMD方法。该方法采用一种新的IMF筛分终止条件——以信号自身的最小频率为EMD分解IMF分量的截止频率;然后将... 为解决总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)中虚假IMF分量过多问题,提出了一种基于频率截止的EEMD方法。该方法采用一种新的IMF筛分终止条件——以信号自身的最小频率为EMD分解IMF分量的截止频率;然后将基于频率截止的IMF筛分终止条件引入EEMD分解。通过仿真和实测信号分析,并与EMD、EEMD分解结果比较得到,运用频率截止的EEMD方法不仅有效减少了虚假IMF分量的产生,使得分解的目的性更加明确,而且保证了EEMD分解出的IMF分量的完备性,更好地抑制了模态混叠现象。 展开更多
关键词 总体平均经验模态分解 频率截止 模态混叠 IMF分量
在线阅读 下载PDF
基于EEMD和关联维数的小电流接地故障选线 被引量:8
20
作者 张淑清 赵朋程 +3 位作者 陈颖 刘子玥 张立国 严冰 《计量学报》 CSCD 北大核心 2016年第3期300-305,共6页
提出一种基于总体平均经验模态分解(EEMD)和关联维数相结合的小电流接地故障选线新方法。EEMD对非线性、非平稳信号的处理,不仅能达到与经验模态分解(EMD)相同的效果,同时又能有效地抑制模式混叠,非常适用于对小电流接地故障信... 提出一种基于总体平均经验模态分解(EEMD)和关联维数相结合的小电流接地故障选线新方法。EEMD对非线性、非平稳信号的处理,不仅能达到与经验模态分解(EMD)相同的效果,同时又能有效地抑制模式混叠,非常适用于对小电流接地故障信号的处理。关联维数作为反映系统状态的特征量,能定量分析故障状态,提高故障诊断能力。在计算关联维数前,需要进行相空间重构,采用极大联合熵算法求取最佳延迟时间,以往用互信息求取延迟时间法,该方法简化了算法,缩短了计算关联维数的时间。最后采用G-P算法计算零序电流相关分量的关联维数,通过比较关联维数,实现故障选线。实验结果表明该方法能快速准确地选出故障线路,为小电流接地故障选线提供一种有效的新方法。 展开更多
关键词 计量学 故障选线 小电流接地 总体平均经验模态分解 关联维数 极大联合熵 G—P算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部