针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问...针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。展开更多
针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。...针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。在搜索方面,分别建立了包括目标存在概率地图、不确定度地图、区域遍历度地图在内的实时地图并设定其更新规则,根据搜索目标建立决策函数;在局部规划方面,将滚动规划与改进RRT算法相结合,规划出到搜索决策点的路径。二者的结合,实现了AUV在三维空间下在线实时搜索。仿真表明,该算法具有较强的遍历能力,提高了三维空间下目标搜索的速度。展开更多
文摘针对现有起重机路径规划效率低的问题,提出一种基于改进快速探索随机树(rapidly-exploring random tree,RRT)的起重机路径规划算法。将广义距离替代经典RRT中欧氏距离,解决多自由度(degree of freedom,DOF)下RRT中距离的定义不明确的问题。基于降维概念的胞元法,将C构型空间(configuration space,C空间)划分为大小相等的单元格,解决经典RRT中最近邻搜索(nearest neighbor search,NNS)在计算时间和资源方面效率低的问题。实验结果表明:在相同实验条件下,改进的RRT算法比双向RRT算法计算时间减少89.5%,能提高计算时间效率和提升搜寻路径质量,具有一定的参考价值。
文摘针对未知水下环境下的自主水下航行器(autonomous underwater vehicle,AUV)目标搜索问题,传统方法搜索速度慢且以解决二维平面下搜索问题为主,本文提出了一种基于改进RRT(rapid-exploration random tree)的未知三维环境目标搜索算法。在搜索方面,分别建立了包括目标存在概率地图、不确定度地图、区域遍历度地图在内的实时地图并设定其更新规则,根据搜索目标建立决策函数;在局部规划方面,将滚动规划与改进RRT算法相结合,规划出到搜索决策点的路径。二者的结合,实现了AUV在三维空间下在线实时搜索。仿真表明,该算法具有较强的遍历能力,提高了三维空间下目标搜索的速度。