期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于改进双重压缩和激励与多头特征注意力机制的电-热负荷协同预测
1
作者 余强 韩静娴 +4 位作者 杨子梁 宋济东 杨德昌 齐海杰 于芃 《电力自动化设备》 北大核心 2025年第3期201-208,共8页
综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注... 综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注意力对卷积结果进行赋权,并利用输入门控循环单元模型对负荷进行预测。算例仿真结果表明,所提模型的平均绝对百分比误差均低于3%。 展开更多
关键词 综合能源系统 负荷预测 分组卷积神经网络 门控循环单元 改进的压缩和激励注意力机制 多头特征注意力机制
在线阅读 下载PDF
基于双注意力图神经网络的链路预测 被引量:1
2
作者 杨真真 林泽龙 杨永鹏 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期106-114,共9页
链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1... 链路预测是在图结构中预测未知或潜在的边,对挖掘图中的隐含信息、补全图中的缺失数据和发现图中的新知识都具有重要意义。图神经网络(Graph Neural Network,GNN)已被广泛应用于链路预测,然而,现有基于GNN的链路预测方法存在一些问题:(1)大多数基于GNN的方法往往容易忽略为链路预测提供额外帮助的边信息的重要性;(2)大多数基于GNN的方法都仅捕获表示图的邻居节点间相似性的低频信息,忽略了表示邻居节点间差异性的高频信息;(3)大多数基于GNN的方法都未考虑输入特征矩阵的节点维度和特征维度两个维度,只关注其中一个维度。针对这些问题,提出了一种基于双注意力图神经网络(Dual Attention Graph Neural Network,DAGNN)的链路预测方法,该方法包含两条路径,以不同的角度更新节点表示。其中一条是基于图神经网络的路径,采用含边信息的频率自适应图注意力网络(Frequency Adaptive Graph Attention Network with Edge Information,FAGAT⁃EI)作为基础模型,有效地利用边信息增强节点之间的关系,并利用频率自适应机制平衡高低频率邻居信息的权重,从而缓解GNN的过度平滑问题;另一条是基于通道注意力网络的路径,提出了一种新的压缩-激励通道注意力模块(Squeeze and Excitation⁃Channel At⁃tention Module,SE⁃CAM)作为基础模型,充分考虑输入特征矩阵的节点维度和特征维度,并自动学习和调整每个节点的不同特征权重,从而得到更有意义的节点表示。最后在两个基准数据集上进行了实验,实验结果表明,提出的链路预测方法在Last⁃FM和Book⁃Crossing两个数据集上的AUC和ACC指标均优于其他基线模型,展现出了卓越的链路预测性能。 展开更多
关键词 链路预测 图神经网络 注意力机制 压缩-激励模块 频率自适应
在线阅读 下载PDF
融合残差及通道注意力机制的单幅图像去雨方法 被引量:6
3
作者 张世辉 闫晓蕊 桑榆 《计量学报》 CSCD 北大核心 2021年第1期20-28,共9页
为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校... 为了去除雨天图像上附着的雨滴并恢复图像的清晰度,提出一种基于深度学习思想结合图像增强技术融合残差及通道注意力机制来实现的单幅图像去雨方法。首先,利用导向滤波将有雨图像分解为平滑基本层和高频细节层;其次,提出自适应Gamma校正算法增强平滑基本层以提高对比度;然后,构建融合残差块和通道注意力机制的深度神经网络实现高频细节层去雨;最后,将去雨后的高频细节层与增强后的平滑基本层融合实现单幅图像去雨功能。实验结果表明:与具有代表性的单幅图像去雨方法相比,所提方法效果较好并可保留更多的图像细节信息。 展开更多
关键词 计量学 单幅图像去雨 图像处理 压缩和激励残差网络 注意力机制 深度学习 GAMMA校正
在线阅读 下载PDF
基于双分支融合和时频压缩激励的鲁棒语音关键词识别 被引量:1
4
作者 张婷婷 邱泽鹏 +1 位作者 赵腊生 毛嘉莹 《计算机应用研究》 CSCD 北大核心 2024年第12期3658-3663,共6页
现实生活中的噪声会对语音时域和频域信息产生干扰,导致语音关键词识别模型在噪声环境下准确率下降。针对此问题,提出了双分支融合单元,其中时域分支与频域分支以并行的方式提取时域特征和频域特征,降低了串行堆叠时域卷积和频域卷积所... 现实生活中的噪声会对语音时域和频域信息产生干扰,导致语音关键词识别模型在噪声环境下准确率下降。针对此问题,提出了双分支融合单元,其中时域分支与频域分支以并行的方式提取时域特征和频域特征,降低了串行堆叠时域卷积和频域卷积所带来的信息损耗;随后通过交叉融合的方式加强模型对时频信息的感知,进一步增强了模型特征表达能力。同时提出了时频压缩激励模块,通过对时域与频域中信息的重要性分布建模,可以为模型提供选择性关注有价值片段的能力,进一步提高了模型鲁棒性。在Google Command v2-12数据集上,相比于对比模型,所提模型在不同信噪比的测试中取得了更高的识别准确率,且参数量更低;对于训练阶段未涵盖的信噪比条件,所提模型在测试中展现出更高的泛化性。实验结果表明,本文模型在识别准确率和参数量方面更具优势,具有更好的噪声鲁棒性。 展开更多
关键词 关键词识别 双分支融合 时频压缩激励 鲁棒性模型 注意力机制
在线阅读 下载PDF
基于YOLOv5s改进模型的堆叠螺栓抓取研究 被引量:2
5
作者 李凤洋 邱益 +3 位作者 陈江义 杨云峰 窦晓亮 郝树涛 《机电工程》 CAS 北大核心 2024年第8期1500-1507,共8页
在当前工业的螺栓生产过程中,堆叠螺栓的分拣工作依然需要人工完成,不仅工作效率低,而且会导致大量人力资源的浪费。针对这一问题,对YOLOv5网络模型进行了改进,提出了SE_YOLOv5网络模型。首先,在原网络的Neck部分删除了P′1特征层,减小... 在当前工业的螺栓生产过程中,堆叠螺栓的分拣工作依然需要人工完成,不仅工作效率低,而且会导致大量人力资源的浪费。针对这一问题,对YOLOv5网络模型进行了改进,提出了SE_YOLOv5网络模型。首先,在原网络的Neck部分删除了P′1特征层,减小了网络对浅层信息的提取,在不影响对大尺寸目标检测的前提下,提高了网络检测的实时性;然后,改进了Backbone模块,通过添加压缩与激励(SE)注意力机制,使网络更高效地聚焦于图像中的重要部分,增强了网络对堆叠螺栓检测的准确性;最后,提出了检测框重叠最小法,减少了抓取时夹爪与非目标螺栓的碰撞,并对螺栓检测框进行了抓取点位姿优化,提高了抓取的成功率。研究结果表明:SE_YOLOv5网络对堆叠螺栓检测的平均精度为86.5%,平均速度为13.02 FPS;相比于原YOLOv5s网络模型,SE_YOLOv5网络在检测精度上提升了1.2%,在检测速度上提升了2.71 FPS;相比于其他检测模型,SE_YOLOv5也具有更高的检测精度和检测速度。抓取结果证明,该模型能用于有效地指导机械臂进行螺栓抓取操作。 展开更多
关键词 堆叠螺栓分拣 SE_YOLOv5网络模型 压缩激励注意力机制 重叠最小法 抓取操作 抓取点位姿优化
在线阅读 下载PDF
增强自适应TCN的柴油发动机剩余寿命预测模型
6
作者 张曦 杨颖 +1 位作者 陈超君 王春风 《计算机工程与设计》 北大核心 2025年第7期2071-2080,共10页
时间卷积网络在剩余使用寿命预测方面取得了显著进展,但现有模型没有考虑输入特征在不同时间步和通道的重要性,以及网络结构固定,无法灵活学习深度时间表示。针对这些问题,提出一种增强自适应时间卷积网络(EATCN)。通过改进的自注意力... 时间卷积网络在剩余使用寿命预测方面取得了显著进展,但现有模型没有考虑输入特征在不同时间步和通道的重要性,以及网络结构固定,无法灵活学习深度时间表示。针对这些问题,提出一种增强自适应时间卷积网络(EATCN)。通过改进的自注意力模块对输入特征的不同时间步进行加权,采用压缩激励模块对长期特征的不同通道进行加权。自适应时间卷积网络能够动态调整网络结构,更好地提取深层长期时间特征。在某柴油发动机制造商两个真实的数据集上进行实验,实验结果验证了所提模型的有效性。 展开更多
关键词 剩余使用寿命预测 时间卷积网络 注意力机制 压缩激励 滑动窗口 指数平滑 归一化
在线阅读 下载PDF
基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断模型
7
作者 许家瑞 陈焰 《机电工程》 北大核心 2025年第8期1458-1468,共11页
在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振... 在传统齿轮箱故障诊断过程中,因故障样本稀缺会导致模型的故障诊断精度降低。针对这一问题,提出了一种基于同步压缩小波变换(SWT)和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法(模型)。首先,使用小波阈值去噪算法对采集到的齿轮箱振动信号进行了阈值化去噪处理,消除了背景噪声;然后,使用同步压缩小波变换算法,对去噪后的振动信号进行了时频分析和时频变换,将一维去噪信号转变为二维时频图,用于构建故障诊断模型的训练样本;接着,对预训练ResNet50模型进行了微调,实现了迁移学习(TL)目的,并对迁移学习模型进行了轻量化改进,同时在模型内部嵌入了多头注意力机制,用于改善模型对不同特征权重的分配;最后,使用2组齿轮副数据和2组轴承数据,对基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法的有效性进行了验证。研究结果表明:基于SWT和ResNet50-TL-S模型的小样本齿轮箱故障诊断方法在无负荷工况下的单齿轮副故障诊断中,模型分类精度高达99.45%,模型训练时间为644 s;在齿轮副和轴承多重故障诊断中,模型分类精度为99.59%,模型训练时间为643 s;在有负荷工况的轴承和齿轮副多重故障诊断中,模型分类精度为98.12%,模型训练时间为646 s。这表明基于SWT和ResNet50-TL-S模型的齿轮箱故障诊断方法具备较高的齿轮箱故障诊断精度和较短的模型训练时间。 展开更多
关键词 机械传动 小波阈值去噪 同步压缩小波变换 ResNet50模型 轻量化改进 多头注意力机制 迁移学习模型
在线阅读 下载PDF
基于改进YOLOv5s模型的山地果园单轨运输机搭载柑橘的检测 被引量:3
8
作者 周岳淮 李震 +4 位作者 左嘉明 龚琬蓉 吕石磊 温威 黄莺 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期491-496,共6页
由于山地果园运输机立地条件差,实时作业信息的获取、反馈、集中化管理较为困难,为了解7SYDD-200型山地果园单轨运输机搭载货物情况,合理调度运输装备,建立了基于改进的YOLOv5s模型的运输机搭载柑橘果筐的检测方法:在果园自然光环境下使... 由于山地果园运输机立地条件差,实时作业信息的获取、反馈、集中化管理较为困难,为了解7SYDD-200型山地果园单轨运输机搭载货物情况,合理调度运输装备,建立了基于改进的YOLOv5s模型的运输机搭载柑橘果筐的检测方法:在果园自然光环境下使用RGB相机(HSK-200)采集运输机搭载柑橘果筐的图像数据;建立和优化YOLOv5s模型,部署至嵌入式设备,实现对搭载过程中的“空果筐”“柑橘”“满果筐”状态的检测。在模型的颈部网络引入CBAM注意力机制,加强模型提取语义信息的能力,解决检测过程中出现的“双重标签”的问题,使用批归一化(BN)层稀疏的尺度因子衡量各通道对模型的表征能力,并对表征能力弱的通道进行剪枝压缩,以克服基模型YOLOv5s检测速度慢的问题,通过多尺度训练策略对模型进行微调,提高模型检测准确率。试验结果表明:改进YOLOv5s模型的检测方法在柑橘搭载数据集上平均精度均值(m AP)为93.3%;模型的浮点数运算量和大小分别为9.9GFLOPs和3.5 MB,比YOLOv5s的提高60.3%和21.3%;在嵌入式平台Jetson Nano部署,其检测速度为78 ms/帧。 展开更多
关键词 山地果园单轨运输机 目标检测 剪枝压缩 CBAM注意力机制 改进YOLOv5s
在线阅读 下载PDF
一种改进时序卷积网络的序列推荐方法
9
作者 施浩杰 刘学军 肖庆华 《小型微型计算机系统》 CSCD 北大核心 2021年第7期1382-1388,共7页
序列推荐在构建现代推荐系统中起着十分重要的作用,如何对序列进行建模是当前学术界研究的热点.针对传统推荐算法难以表示用户兴趣的动态变化,基于循环神经网络的推荐方法在捕捉复杂的序列关系方面的不足,提出了一种嵌入压缩-激励模块... 序列推荐在构建现代推荐系统中起着十分重要的作用,如何对序列进行建模是当前学术界研究的热点.针对传统推荐算法难以表示用户兴趣的动态变化,基于循环神经网络的推荐方法在捕捉复杂的序列关系方面的不足,提出了一种嵌入压缩-激励模块的改进时序卷积网络来提取序列特征.模型利用扩张卷积增大感受野,捕获更多的序列关系,利用残差连接减小反向传播过程中的梯度消失问题.通过对用户和项目特征的融合,模型可以综合考虑用户的短期和长期偏好进行个性化推荐.在两个数据集上的实验结果表明,本文提出的算法要优于基线算法,取得较好的推荐效果. 展开更多
关键词 序列推荐 压缩激励 注意力机制 扩张卷积 时序卷积
在线阅读 下载PDF
改进U-Net的芯片粘接区空洞缺陷检测模型
10
作者 雷佳蕊 于春和 +2 位作者 文弋 刘岗岗 夏自金 《半导体技术》 2025年第8期843-850,共8页
为解决传统方法在陶瓷封装芯片粘接区缺陷检测中特征表达能力不足以及现有深度学习模型对微小缺陷敏感度低的问题,提出了一种基于U型网络架构(U-Net)的改进型VSCMU-Net语义分割模型。该模型以视觉几何组(VGG)网络为骨干,融合空间和通道... 为解决传统方法在陶瓷封装芯片粘接区缺陷检测中特征表达能力不足以及现有深度学习模型对微小缺陷敏感度低的问题,提出了一种基于U型网络架构(U-Net)的改进型VSCMU-Net语义分割模型。该模型以视觉几何组(VGG)网络为骨干,融合空间和通道压缩与激励(SCSE)注意力机制与多阶门控聚合(MOGA)模块,可有效提取缺陷的深层特征,实现了对微小缺陷的精准分割。实验中采用VSCMU-Net模型对粘接区域及空洞进行分割,结果表明,VSCMU-Net模型在键合区域和空隙分割方面表现出色。该模型平均交并比(mIoU)达92.21%,平均精确度均值(mAP)达95.86%,总体准确率(Accuracy)达99.11%,平均F1分数(mF1-score)达95.79%,均优于传统U-Net、DeepLabv3+、PSPNet和YOLOv8-seg模型,为半导体封装领域关键电子组件的品质保障提供了有力的技术支持。 展开更多
关键词 空洞 语义分割 缺陷检测 深度学习 空间和通道压缩激励(SCSE)注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部