期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于TCNN-MADLSTM的全并联AT牵引网多元信号融合故障定位 被引量:3
1
作者 周欢 陈剑云 +2 位作者 万若安 傅钦翠 李泽文 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第4期206-218,共13页
全并联AT牵引供电系统上下行线路并入自耦变压器,致使故障信号多路径传播,且牵引网导线阻抗不连续,传统方法很难实现牵引网故障准确定位。基于AT牵引网结构,推导牵引网上下行导线故障电流幅值与故障距离的非线性关系;基于改进的卷积神... 全并联AT牵引供电系统上下行线路并入自耦变压器,致使故障信号多路径传播,且牵引网导线阻抗不连续,传统方法很难实现牵引网故障准确定位。基于AT牵引网结构,推导牵引网上下行导线故障电流幅值与故障距离的非线性关系;基于改进的卷积神经网络(Transformer-based CNN,TCNN)和记忆注意力解耦长短期记忆神经网络(Memory Attended Decoupled LSTM,MADLSTM),通过增加注意力机制和残差连接,增强多导线电流幅值与故障距离的非线性函数关系,从而提高牵引网故障定位的精度;将前述方法与传统的卷积神经网络(CNN)和长短期记忆神经网络(LSTM)进行不同噪声条件下的对比验证。结果表明:基于TCNN+MADLSTM算法进行故障定位时,可自适应构建故障距离与多导线电流幅值的非线性函数关系,以及自适应计算故障距离,无须考虑波速影响;相较于传统的CNN+LSTM算法,TCNN+MADLSTM算法故障定位精度更高,故障区段识别精度可达100%,故障定位精度达72.100 m,均方误差为0.016 km^(2)。 展开更多
关键词 全并联AT牵引供电系统 故障定位 改进的卷积神经网络 记忆注意力解耦长短期记忆神经网络
在线阅读 下载PDF
利用SAR影像与多光谱数据反演广域土壤湿度 被引量:8
2
作者 李奎 张瑞 +1 位作者 段金亮 吕继超 《农业工程学报》 EI CAS CSCD 北大核心 2020年第7期134-140,共7页
针对基于主动微波遥感途径开展广域土壤湿度反演的过程中,对植被和土壤粗糙度影响难以进行有效估算的问题,该研究联合多极化雷达和原始多光谱数据源,提出一种改进的卷积神经网络(Improved Convolutional Neural Network,ICNN)方法。该... 针对基于主动微波遥感途径开展广域土壤湿度反演的过程中,对植被和土壤粗糙度影响难以进行有效估算的问题,该研究联合多极化雷达和原始多光谱数据源,提出一种改进的卷积神经网络(Improved Convolutional Neural Network,ICNN)方法。该方法采用不同尺寸的卷积核对原始变量进行一维卷积运算,自适应提取能反映测区土壤湿度时空差异的高级特征维;同时,去除了传统卷积神经网络结构中的池化层,保证提取的特征信息完整。试验结果表明,在边长超过100 km的四川盆地研究区域内,模型预测值与样本数据相关系数达到0.934,预测值偏差服从均值趋近于0的正态分布,均方根误差为1.45%,误差分布范围小于6.3%,结果具有较高的可靠性。该方法可为精准农业、旱涝灾害等领域的广域监测研究提供一定的支撑。 展开更多
关键词 多光谱 土壤湿度 模型 多极化SAR Sentinel-1A/2A 改进的卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部