针对同步定位与建图(simultaneous localization and mapping,SLAM)技术对计算资源的高需求、有限环境适应性、累积误差问题、系统复杂度高、成本昂贵、大场景处理能力受限以及缺乏有效的回环检测机制的缺点,提出一种结合人工势场法和...针对同步定位与建图(simultaneous localization and mapping,SLAM)技术对计算资源的高需求、有限环境适应性、累积误差问题、系统复杂度高、成本昂贵、大场景处理能力受限以及缺乏有效的回环检测机制的缺点,提出一种结合人工势场法和深度强化学习的方法。利用图论模拟人工势场在机器人间的相互作用以及机器人与目的地之间的势场力,并采用孪生延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法来优化机器人对障碍物信息的感知和处理。仿真试验结果表明:该方法使机器人能够在未知环境中快速、准确地进行定位、移动,同时维持队形的稳定性和一致性。展开更多
当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,...当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,判断当机器人陷入局部最小值时,通过在合适位置增加临时引导点的方法,引导其跳出局部极小值点;其次,引入分数阶微积分思想方法结合APF算法,提出混合阶次的分数阶梯度下降法进行位置信息迭代,优化算法的收敛速度和收敛精度;最后,用MATLAB软件对该方法进行仿真,实验结果表明提出的方法可以有效解决局部最小值问题,而且在速度、精度上都有明显的提高,且能适应较为复杂的多障碍物环境,验证了改进方法的有效性、正确性。展开更多
文摘针对同步定位与建图(simultaneous localization and mapping,SLAM)技术对计算资源的高需求、有限环境适应性、累积误差问题、系统复杂度高、成本昂贵、大场景处理能力受限以及缺乏有效的回环检测机制的缺点,提出一种结合人工势场法和深度强化学习的方法。利用图论模拟人工势场在机器人间的相互作用以及机器人与目的地之间的势场力,并采用孪生延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法来优化机器人对障碍物信息的感知和处理。仿真试验结果表明:该方法使机器人能够在未知环境中快速、准确地进行定位、移动,同时维持队形的稳定性和一致性。
文摘当移动机器人在行进过程中使用传统人工势场法(artificial potential field method, APF)进行路径规划时,通常会陷入局部最优困境,无法顺利到达目标点。为解决这一问题,首先,对APF算法规划路径失败原因进行分析,其次设置情况判断条件,判断当机器人陷入局部最小值时,通过在合适位置增加临时引导点的方法,引导其跳出局部极小值点;其次,引入分数阶微积分思想方法结合APF算法,提出混合阶次的分数阶梯度下降法进行位置信息迭代,优化算法的收敛速度和收敛精度;最后,用MATLAB软件对该方法进行仿真,实验结果表明提出的方法可以有效解决局部最小值问题,而且在速度、精度上都有明显的提高,且能适应较为复杂的多障碍物环境,验证了改进方法的有效性、正确性。