期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
改进的交互式卡尔曼滤波对雷达数据处理技术研究 被引量:3
1
作者 刘全周 贾鹏飞 +2 位作者 李占旗 王启配 王述勇 《机械科学与技术》 CSCD 北大核心 2020年第8期1248-1255,共8页
为了减少车载毫米波雷达数据中的噪声影响,本文采用了改进的交互式卡尔曼滤波算法对采集数据进行了处理,得到了目标运动状态的最优值。依据目标车辆的运行轨迹构建了运动状态方程,确定了不同状态下的状态矩阵和观测矩阵,同时设计了交互... 为了减少车载毫米波雷达数据中的噪声影响,本文采用了改进的交互式卡尔曼滤波算法对采集数据进行了处理,得到了目标运动状态的最优值。依据目标车辆的运行轨迹构建了运动状态方程,确定了不同状态下的状态矩阵和观测矩阵,同时设计了交互式多模型滤波器,借助于dSPACE场景仿真软件建立了虚拟交通场景,利用硬件在环技术实现了运动目标的数据采集,分析计算了雷达数据噪声,在滤波过程中,利用遗传算法对过程噪声和量测噪声进行在线优化,得到噪声的最优组合。通过激光雷达对目标的探测结果对算法的滤波性能进行了验证,滤波算法求得的数据平均误差小于0.1 m,对数据的噪声起到一定的抑制作用,提高了对目标车辆的定位与追踪能力。 展开更多
关键词 车载毫米波雷达 改进的交互式卡尔曼滤波 硬件在环 遗传算法
在线阅读 下载PDF
基于改进自适应交互式多模型无迹卡尔曼滤波算法的车辆目标跟踪
2
作者 南奔洋 匡兵 景晖 《科学技术与工程》 北大核心 2025年第11期4605-4611,共7页
为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建... 为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建立车辆的运动模型,并通过无迹卡尔曼滤波对车辆目标进行跟踪。然后将子模型概率变化率作为IMM算法修正参数,对马尔可夫矩阵主对角线和非主对角线元素采用不同的修正策略。最后设置判定窗修正归一化后的马尔可夫矩阵主对角线元素,以扩大匹配模型的概率。结果表明,改进算法模型概率变化更加明显,位置和速度均方根误差均要小于原有算法,有效地提高了跟踪精度。 展开更多
关键词 目标跟踪 交互式多模型 自适应 马尔可夫矩阵 无迹卡尔曼滤波
在线阅读 下载PDF
基于改进自适应卡尔曼滤波算法的温室UWB定位技术 被引量:1
3
作者 张兆国 朱时亮 +3 位作者 王法安 解开婷 张炅昊 李漫漫 《农业机械学报》 北大核心 2025年第3期494-502,522,共10页
针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测... 针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。 展开更多
关键词 温室 精确定位 超宽带 改进自适应卡尔曼滤波
在线阅读 下载PDF
改进容积卡尔曼滤波的多目标多模态跟踪算法
4
作者 刘德儿 程健康 刘峻廷 《传感技术学报》 北大核心 2025年第7期1253-1261,共9页
高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检... 高效安全的多目标跟踪技术是智能汽车行驶过程中的重要环节,然而目前许多方法忽略了误检目标可能对行驶安全性造成的潜在影响。为了减少误检目标的出现,提出了一种基于多传感器融合的双重关联机制,首先将轨迹与点云域和图像域中同时检测到的目标相关联并使用卡尔曼滤波进行更新,其次将未关联的轨迹与仅出现在点云域中的目标相关联,其中第一步未关联的目标定义为新轨迹,而第二步未关联的目标删除,所提方法可以极大地减少智能车辆行驶过程中误检目标的出现,从而显著提升行驶的安全性。同时,针对一些采用非线性卡尔曼滤波器的方法中在转弯过程中目标框偏移的问题,提出了一种改进的容积卡尔曼滤波器。该方法利用IMU数据来判断车辆的行驶状态,并自适应地调整估计误差矩阵,有效消除了车辆转弯对目标行驶状态估计的负面影响。在Kitti多目标跟踪数据集上进行测试的结果显示,所提算法有很高的优越性,HOTA(High Object Track Accuracy)达到78.00,MOTA(Multi-Object Track Accuracy)达到88.85,FPS达到200,在保持高精度的同时能很好满足实时性要求。 展开更多
关键词 自动驾驶 多目标跟踪 改进容积卡尔曼滤波 非线性运动模型 传感器融合
在线阅读 下载PDF
基于改进卡尔曼滤波的配电系统多时钟源时间同步方法
5
作者 刘朋矩 刘希 +3 位作者 丁添 王睿秋雨 周振宇 孙中伟 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期53-61,共9页
多时钟源时间同步通过融合多个时钟源的时间同步信息,可以实现配电系统高精度时间同步,保障配电系统的稳定运行。然而,配电系统多时钟源时间同步仍面临着时钟源权重优化困难和随机因素导致同步精度下降等挑战。针对上述挑战,首先,构建... 多时钟源时间同步通过融合多个时钟源的时间同步信息,可以实现配电系统高精度时间同步,保障配电系统的稳定运行。然而,配电系统多时钟源时间同步仍面临着时钟源权重优化困难和随机因素导致同步精度下降等挑战。针对上述挑战,首先,构建了以最小化相对时间同步误差为目标的多时钟源时间同步误差模型;其次,提出基于改进卡尔曼滤波的配电系统多时钟源时间同步方法,通过动态评分层次分析法计算多时钟源权重,优化时间同步误差加权和;通过改进卡尔曼滤波减小观测噪声与过程噪声,降低相对时间同步误差;最后,通过仿真分析验证了所提算法的有效性。仿真结果表明,所提算法能够有效降低相对时间同步误差,实现配电系统高精度时间同步。 展开更多
关键词 配电系统 多时钟源 时间同步 动态评分层次分析法 改进卡尔曼滤波
在线阅读 下载PDF
基于IMM卡尔曼滤波的船舶轨迹预测研究
6
作者 王强 宋巍 +1 位作者 华中伟 陆平 《传感器与微系统》 北大核心 2025年第10期48-51,共4页
为解决船舶自动识别系统(AIS)数据频率低、轨迹非线性和高机动性等问题,提出一种交互式多模型(IMM)卡尔曼滤波算法进行船舶轨迹预测。通过对AIS数据进行预处理,修正异常速度和位置,提高数据准确性。算法采用多个状态模型并行估计船舶状... 为解决船舶自动识别系统(AIS)数据频率低、轨迹非线性和高机动性等问题,提出一种交互式多模型(IMM)卡尔曼滤波算法进行船舶轨迹预测。通过对AIS数据进行预处理,修正异常速度和位置,提高数据准确性。算法采用多个状态模型并行估计船舶状态,利用马尔可夫链实现模型概率转移,融合得到最优估计。研究结果表明,船舶轨迹预测波动误差均值小于5 m,误差标准差约20,受目标机动的影响较小。该算法具有良好的实时性和精确性,能够有效应对非线性和机动性变化,为智能航运提供可靠支持。 展开更多
关键词 交互式多模型 卡尔曼滤波 轨迹预测 最优估计
在线阅读 下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计 被引量:4
7
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波的PID转向控制系统设计
8
作者 田雅琴 师旭源 +1 位作者 胡梦辉 王杰鹏 《机床与液压》 北大核心 2025年第12期118-128,共11页
为了避免局部最优解的出现,在灰狼算法中引入了Tent混沌映射初始化种群、非线性收敛因子调整策略、基于精英个体的高斯扰动机制,使灰狼算法的搜索范围得以扩大;搭建了Simulink动力学仿真模型并进行了算法性能模拟,通过观测噪声和过程噪... 为了避免局部最优解的出现,在灰狼算法中引入了Tent混沌映射初始化种群、非线性收敛因子调整策略、基于精英个体的高斯扰动机制,使灰狼算法的搜索范围得以扩大;搭建了Simulink动力学仿真模型并进行了算法性能模拟,通过观测噪声和过程噪声验证了算法的优越性。针对移动机器人转向控制中传统PID存在的超调量大、响应慢及易受干扰等问题,提出一种基于自适应无迹卡尔曼滤波(AUKF)的参数自整定PID控制方法,其优点是无需雅可比矩阵,通过采用无迹变换来处理非线性系统。对4种滤波模型输入噪声,验证了AUKF的抗干扰和滤波能力最佳,其中AUKF相对于UKF的误差绝对值最大缩小了58%,稳定性最大提高了62%。仿真与实验结果表明:该方法显著改善了系统的控制精度、鲁棒性、响应速度及超调量。 展开更多
关键词 无迹卡尔曼滤波 PID控制 转向控制系统 改进灰狼算法 MATLAB仿真
在线阅读 下载PDF
基于卡尔曼滤波的改进ADRC风电制动器控制策略研究 被引量:1
9
作者 冯高明 杨展 谭兴国 《陕西科技大学学报》 北大核心 2024年第2期156-163,共8页
为了提高风电制动器的抗干扰能力和控制精度,在传统三闭环系统的基础上,提出改进自抗扰控制并融合卡尔曼滤波算法.在扩张状态观测器中引入速度跟踪情况,将传统的“大带宽、小误差”改进为“小带宽、小误差”,提高观测器的观测效率.在误... 为了提高风电制动器的抗干扰能力和控制精度,在传统三闭环系统的基础上,提出改进自抗扰控制并融合卡尔曼滤波算法.在扩张状态观测器中引入速度跟踪情况,将传统的“大带宽、小误差”改进为“小带宽、小误差”,提高观测器的观测效率.在误差反馈控制率中引入新型指数趋近律的滑模控制,增强控制效果.在电流环中引入卡尔曼滤波算法,降低电流噪声.通过MATLAB/Simulink建立风电制动系统的数学模型,与传统自抗扰控制策略和PID控制策略进行对比分析.结果表明:改进后的控制策略提高了响应速度,降低了启动转矩和电流噪声;制动器在不同工况下均展现出来良好的控制效果和抗干扰能力,提升了系统的鲁棒性和动态性能. 展开更多
关键词 风力发电 电动制动器 改进自抗扰控制 卡尔曼滤波 三闭环控制
在线阅读 下载PDF
基于卡尔曼滤波的交互式多模型GPS定位方法研究 被引量:12
10
作者 陆建山 王昌明 +1 位作者 宋高顺 张爱军 《兵工学报》 EI CAS CSCD 北大核心 2011年第6期770-774,共5页
针对GPS定位中,由于模型单一而不能适应环境影响或机动过程变化的问题,提出将交互式多模型算法引入到定位方法中。文中详细阐述了基于卡尔曼(Kalman)滤波的交互式多模型(IMMKF)算法原理及其在GPS定位中的应用。根据静态单点定位实测数... 针对GPS定位中,由于模型单一而不能适应环境影响或机动过程变化的问题,提出将交互式多模型算法引入到定位方法中。文中详细阐述了基于卡尔曼(Kalman)滤波的交互式多模型(IMMKF)算法原理及其在GPS定位中的应用。根据静态单点定位实测数据的试验分析,验证了变噪声模型的IMMKF能很好地适应环境噪声的变化;进一步通过动态定位仿真,说明了IMMKF算法在动态过程中能对多模型进行有效的融合,在很大程度上弥补了单模型的不足。 展开更多
关键词 飞行器控制、导航技术 GPS 单点定位 交互式多模型 卡尔曼滤波
在线阅读 下载PDF
两阶段卡尔曼滤波自适应交互式多模型算法 被引量:5
11
作者 廖阳 王睿 +1 位作者 曾昭博 熊加遥 《探测与控制学报》 CSCD 北大核心 2010年第3期83-86,共4页
对于机动目标跟踪问题,由于目标机动能力的增强,需建立大量模型来逼近真实模式,使建立的目标模型与目标的实际运动适配,但这使计算量增大,而且性能不一定能提高。针对这个问题,将两阶段卡尔曼滤波器与一般的交互式多模型算法相结合,设... 对于机动目标跟踪问题,由于目标机动能力的增强,需建立大量模型来逼近真实模式,使建立的目标模型与目标的实际运动适配,但这使计算量增大,而且性能不一定能提高。针对这个问题,将两阶段卡尔曼滤波器与一般的交互式多模型算法相结合,设计了一种自适应交互式多模型算法。该算法采用两阶段卡尔曼估计器估计目标的加速度,然后将其反馈到由多个不同参数构成子滤波器的交互式多模型滤波算法中进行交互式多模型滤波。与自适应半交互式多模型算法进行对比的仿真验证了该算法有效地减少了子滤波器的数量,同时在一定程度上也提高了跟踪的精度。 展开更多
关键词 机动目标跟踪 卡尔曼滤波 交互式多模型(IMM)
在线阅读 下载PDF
防发散无迹卡尔曼滤波自适应网格交互式多模型算法 被引量:4
12
作者 张园 董受全 +2 位作者 钟志通 刘淑波 初俊博 《火力与指挥控制》 CSCD 北大核心 2015年第2期40-44,共5页
针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交... 针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交互式多模型算法相比,可以解决固定结构多模型算法存在的问题,有效提高多模型算法的精度和费效比,缩短计算时间,且适合工程应用。 展开更多
关键词 无迹卡尔曼滤波(UKF) 自适应网格(AG) 交互式多模型(IMM) 机动目标跟踪 变结构多模型(VSMM)
在线阅读 下载PDF
基于求积分卡尔曼滤波的交互式多模型算法 被引量:1
13
作者 马丽丽 陈金广 《计算机工程》 CAS CSCD 北大核心 2011年第16期191-193,共3页
针对非线性系统中的多模型估计问题,将求积分卡尔曼滤波算法应用到交互式多模型算法过程中,提出一种基于求积分卡尔曼滤波的交互式多模型算法。该算法不需要求取非线性方程的雅可比矩阵,且能够获得比基于不敏卡尔曼滤波的交互式多模型... 针对非线性系统中的多模型估计问题,将求积分卡尔曼滤波算法应用到交互式多模型算法过程中,提出一种基于求积分卡尔曼滤波的交互式多模型算法。该算法不需要求取非线性方程的雅可比矩阵,且能够获得比基于不敏卡尔曼滤波的交互式多模型方法更高的滤波精度。仿真结果证明了该算法的有效性。 展开更多
关键词 交互式多模型 非线性滤波 求积分卡尔曼滤波 目标跟踪 状态估计
在线阅读 下载PDF
交互式多模型七阶容积卡尔曼滤波算法 被引量:5
14
作者 冉娜 乔雪 《电子测量与仪器学报》 CSCD 北大核心 2018年第6期167-172,共6页
为提高非线性机动目标的跟踪精度,提出交互式多模型七阶容积卡尔曼滤波(IMM-7th CKF)算法。采用对非线性系统滤波效果更好的七阶容积卡尔曼滤波(7th CKF)作为交互式多模型(IMM)算法的子滤波器,对各模型状态进行估计,将IMM算法和7th CKF... 为提高非线性机动目标的跟踪精度,提出交互式多模型七阶容积卡尔曼滤波(IMM-7th CKF)算法。采用对非线性系统滤波效果更好的七阶容积卡尔曼滤波(7th CKF)作为交互式多模型(IMM)算法的子滤波器,对各模型状态进行估计,将IMM算法和7th CKF结合起来,提高对非线性机动目标的跟踪效果,最后采用典型机动目标跟踪问题验证IMM-7th CKF的跟踪性能。仿真结果表明,IMM-7th CKF相比交互式多模型容积卡尔曼滤波(IMM-CKF)和交互式多模型五阶容积卡尔曼滤波(IMM-5th CKF)具有更高的滤波精度。 展开更多
关键词 机动目标 交互式多模型 状态估计 七阶容积卡尔曼滤波
在线阅读 下载PDF
基于卡尔曼滤波的遗传蚁群混合算法优化改进云模型的渗流监测异常值识别
15
作者 王奎 欧斌 +1 位作者 刘振宇 傅蜀燕 《科学技术与工程》 北大核心 2024年第33期14393-14399,共7页
大坝安全监测序列中广泛分布异常值,对其进行筛选与辨识是判定大坝运行性态的前提。传统的基于回归模型的异常识别方法会对监测数据造成正常值误判或者异常值漏判的情况。针对上述问题,将监测数据序列结合卡尔曼滤波方法去除噪声项,并... 大坝安全监测序列中广泛分布异常值,对其进行筛选与辨识是判定大坝运行性态的前提。传统的基于回归模型的异常识别方法会对监测数据造成正常值误判或者异常值漏判的情况。针对上述问题,将监测数据序列结合卡尔曼滤波方法去除噪声项,并以测值的日变化速率代替去噪后的数据,从而保留数据真实的演变轨迹,再结合云模型,建立基于日变化速率的改进云模型。同时采用遗传蚁群混合算法对改进云模型的阈值进行优化。分别对去噪前后和阈值优化前后的异常值数量进行对比分析。结果显示:原始数据经过卡尔曼滤波去噪处理后,日变换速率的总体范围显著减小,而用遗传蚁群混合算法对阈值区间进行优化后,其优化后的阈值区间小于优化前的。结果表明:所提出的方法在大坝的渗流监测中可更好地识别异常值,减少因噪声而引起的误判,有效提高对异常值的识别精度。 展开更多
关键词 卡尔曼滤波 日变化速率 遗传蚁群混合算法 改进云模型
在线阅读 下载PDF
交互式多模型卡尔曼滤波的车辆悬架系统状态估计
16
作者 顾亮 王振宇 王振峰 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第11期1642-1647,共6页
针对车辆悬架状态无法准确估计的问题,设计了自适应交互式多模型卡尔曼滤波(IMMKF)状态观测器.首先,建立了标准路面激励模型与四分之一线性化悬架模型;然后,利用递归最小二乘方法与IMMKF理论,设计了不同工况下广义悬架模型自适应IMMKF... 针对车辆悬架状态无法准确估计的问题,设计了自适应交互式多模型卡尔曼滤波(IMMKF)状态观测器.首先,建立了标准路面激励模型与四分之一线性化悬架模型;然后,利用递归最小二乘方法与IMMKF理论,设计了不同工况下广义悬架模型自适应IMMKF状态观测器;最后,分析了在标准C级路面激励工况下簧载质量变化对悬架系统状态估计的影响.仿真与台架试验结果表明,在簧载质量变化工况下,所设计的自适应IMMKF状态观测器与传统卡尔曼滤波状态观测器相比其估计精度至少可以提高20%. 展开更多
关键词 状态估计 交互式多模型卡尔曼滤波 递归最小二乘算法 悬架系统 簧载质量
在线阅读 下载PDF
基于改进交互式多模型算法的车辆高精度定位 被引量:1
17
作者 戴玉峰 苏圣超 +1 位作者 崔文霞 汪义旺 《控制理论与应用》 北大核心 2025年第3期590-600,共11页
针对传统交互式多模型算法在车辆运动过程中模型匹配不及时、定位精度较低的问题,本文提出一种结合改进交互式多模型与容积卡尔曼滤波的算法,以改善车辆定位效果.首先,将惯性测量单元和路侧单元的观测结果融合为量测信息;然后,设计一种... 针对传统交互式多模型算法在车辆运动过程中模型匹配不及时、定位精度较低的问题,本文提出一种结合改进交互式多模型与容积卡尔曼滤波的算法,以改善车辆定位效果.首先,将惯性测量单元和路侧单元的观测结果融合为量测信息;然后,设计一种自适应转弯模型,应对角速度非固定时单一匀速转弯模型无法有效定位车辆的情况;进一步考虑模型非线性、状态向量维度较高的特点,采用容积卡尔曼滤波估计车辆状态;最后,提出改进的交互式多模型算法,通过二次交互优化模型概率.仿真实验表明,本文所提算法可以有效提高模型切换速度和车辆定位的准确性与稳定性,其定位误差相比传统交互式多模型算法降低了8.6%. 展开更多
关键词 车辆定位 交互式多模型 卡尔曼滤波 状态估计
在线阅读 下载PDF
基于交互式多模型卡尔曼滤波的主动悬架控制 被引量:8
18
作者 吴骁 史文库 陈志勇 《汽车工程》 EI CSCD 北大核心 2023年第7期1200-1211,1253,共13页
针对固定状态观测器难以保证路面自适应悬架状态观测精度的问题,本文中在交互式多模型卡尔曼滤波(IMMKF)的基础上,建立了悬架状态观测器与控制器。首先基于LQG算法与模糊控制算法建立了路面自适应主动悬架系统。结合谐波叠加法,生成A-B-... 针对固定状态观测器难以保证路面自适应悬架状态观测精度的问题,本文中在交互式多模型卡尔曼滤波(IMMKF)的基础上,建立了悬架状态观测器与控制器。首先基于LQG算法与模糊控制算法建立了路面自适应主动悬架系统。结合谐波叠加法,生成A-B-D-C级空间域路面不平度模型,作为仿真系统的输入。其次以各级路面的最优LQG模型为子模型建立了3种IMMKF悬架状态观测器与控制器。仿真对比表明:14模型的IMMKF悬架状态观测器相对于普通卡尔曼滤波观测器的观测精度最大可提升98.17%,并可用于识别路面等级,并且基于14模型IMMKF的自适应主动悬架控制器的车身加速度相对于被动悬架降低了75.99%、相对于普通LQG主动悬架降低了47.16%,验证了模型的优越性。 展开更多
关键词 交互式多模型卡尔曼滤波 模糊控制 状态观测 路面等级识别
在线阅读 下载PDF
基于交互式多模型无迹卡尔曼滤波的悬架系统状态估计 被引量:3
19
作者 王振峰 李飞 +2 位作者 王新宇 杨建森 秦也辰 《兵工学报》 EI CAS CSCD 北大核心 2021年第2期242-253,共12页
为有效解决复杂行驶工况下非线性悬架系统运动状态无法精确获取的难题,实现模型参数不确定以及时变路面激励工况下悬架状态精确估计的目标,开展了悬架系统状态估计研究。在路面激励模型和非线性悬架系统模型的基础上,结合交互式多模型... 为有效解决复杂行驶工况下非线性悬架系统运动状态无法精确获取的难题,实现模型参数不确定以及时变路面激励工况下悬架状态精确估计的目标,开展了悬架系统状态估计研究。在路面激励模型和非线性悬架系统模型的基础上,结合交互式多模型算法与基于马尔可夫链的蒙特卡洛理论,设计了考虑模型参数不确定以及时变路面激励工况下多模型交互无迹卡尔曼滤波(IMMUKF)状态估计算法,且利用随机控制稳定判据验证了所设计的非线性观测器稳定性判定。对比分析了不同路面激励工况下悬架系统对于传统无迹卡尔曼滤波观测器与IMMUKF观测器的状态估计精度,并进行了台架试验验证。试验与仿真结果表明,IMMUKF观测器可获取更高的系统状态识别精度,不同路面激励仿真工况下状态估计误差最大均方根值不超过8%. 展开更多
关键词 悬架系统 状态估计 无迹卡尔曼滤波 交互式多模型 马尔可夫链 蒙特卡罗
在线阅读 下载PDF
基于交互式多模型和容积卡尔曼滤波的汽车状态估计 被引量:10
20
作者 张家旭 李静 《汽车工程》 EI CSCD 北大核心 2017年第9期977-983,共7页
基于UniTire轮胎模型建立了包含时变噪声统计特性的汽车动力学7自由度整车模型。针对系统状态噪声和观测噪声统计特性未知的问题,提出了一种基于交互式多模型和容积卡尔曼滤波(IMM-CKF)车辆状态估计算法。该算法采用包含不同系统状态噪... 基于UniTire轮胎模型建立了包含时变噪声统计特性的汽车动力学7自由度整车模型。针对系统状态噪声和观测噪声统计特性未知的问题,提出了一种基于交互式多模型和容积卡尔曼滤波(IMM-CKF)车辆状态估计算法。该算法采用包含不同系统状态噪声和观测噪声统计特性的汽车动力学模型作为交互式多模型算法的模型集,用容积卡尔曼滤波器对每个子模型的车辆状态进行估计,并使融合输出结果始终保持跟踪估计误差小的子模型输出。最后利用实车场地环境下多种驾驶工况的测试数据对IMM-CKF算法进行离线验证,并与容积卡尔曼滤波器的估计结果进行对比,结果表明其估计性能优于容积卡尔曼滤波器。 展开更多
关键词 汽车动力学 容积卡尔曼滤波 交互式多模型 汽车状态估计
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部