期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于改进鸽群算法和金字塔卷积的流量异常检测
1
作者 陈虹 卢健波 +2 位作者 金海波 武聪 程明佳 《信息安全研究》 CSCD 北大核心 2024年第12期1107-1114,共8页
针对网络流量中存在大量冗余特征以及机器学习方法检测准确率低的问题,提出一种基于改进鸽群算法(improved pigeon inspired optimizer,IPIO)和金字塔卷积网络(pyramid convolution neural network,PyConv)的流量异常检测方法.首先设计... 针对网络流量中存在大量冗余特征以及机器学习方法检测准确率低的问题,提出一种基于改进鸽群算法(improved pigeon inspired optimizer,IPIO)和金字塔卷积网络(pyramid convolution neural network,PyConv)的流量异常检测方法.首先设计基于IPIO的特征选择方法,降低特征冗余性.通过计算特征集的信息增益率初始化鸽群提高种群质量,加快收敛速度;采用2阶段变异随机修改当前最优解的1个分量,在当前最优解的附近进行搜索,避免陷入局部最优.其次采用PyConv实现深度特征提取,PyConv设计以多尺度的卷积核提取不同大小的特征并进行融合得到新特征.最后通过Softmax分类器实现分类,提升流量异常检测的精度.在UNSW-NB15数据集上的实验结果表明,所提方法在提升准确率的同时显著地减少了冗余特征. 展开更多
关键词 异常检测 改进鸽群算法 金字塔卷积 特征选择 特征提取
在线阅读 下载PDF
基于改进神经网络的视频序列运动目标识别方法 被引量:1
2
作者 范建伟 李琳 靳志鑫 《现代电子技术》 北大核心 2024年第20期118-122,共5页
为改善运动目标检测效果,降低目标漏检率,提出一种基于改进神经网络的视频序列运动目标识别方法。构建改进YOLOv3的运动目标识别模型,以不同帧视频图像为模型输入,经过卷积层的初步特征提取后,输入到由5个残差模块组成的深层网络中。通... 为改善运动目标检测效果,降低目标漏检率,提出一种基于改进神经网络的视频序列运动目标识别方法。构建改进YOLOv3的运动目标识别模型,以不同帧视频图像为模型输入,经过卷积层的初步特征提取后,输入到由5个残差模块组成的深层网络中。通过以上采样方式构建特征金字塔,实现对运动目标四尺度特征的捕捉。在特征金字塔的每一层,应用K-means算法对运动目标真实框进行聚类,确保候选框尺寸和比例与真实运动目标的统计特性相匹配;再利用获得的候选框和分类器对特征图上每个位置进行目标检测,运用非极大值抑制技术剔除重叠框,将斥力损失函数引入到网络训练总损失之中,使预测框无限贴近运动目标真实框,实现对运动目标的精准识别。实验结果表明,所提方法具有显著的运动目标识别能力,当聚类数目为12时,运动目标识别的AUC、F1指标可达到0.92、0.90,且计算量较少。 展开更多
关键词 视频序列 运动目标识别 改进YOLOv3网络 特征金字塔 K-MEANS算法 候选框聚类
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
3
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
基于改进SSD网络的着舰标志识别方法 被引量:3
4
作者 吴鹏飞 石章松 +1 位作者 黄隽 傅冰 《电光与控制》 CSCD 北大核心 2022年第1期88-92,共5页
鉴于深度学习在图像识别领域的重大进展,在无人直升机自主着舰的应用背景下,针对较为复杂的着舰环境和着舰标志设计,采用单级多区域检测(SSD)网络对着舰标志进行识别。针对SSD网络对小目标识别率低的缺点,基于深度残差网络和特征金字塔... 鉴于深度学习在图像识别领域的重大进展,在无人直升机自主着舰的应用背景下,针对较为复杂的着舰环境和着舰标志设计,采用单级多区域检测(SSD)网络对着舰标志进行识别。针对SSD网络对小目标识别率低的缺点,基于深度残差网络和特征金字塔网络结构对SSD网络进行了改进,使用ResNet101代替VGG-16网络,并利用特征金字塔网络结构改进传统上采样结构,将检测网络的高层语义信息融入低层特征信息中,最后通过实验验证了改进网络的识别效果。 展开更多
关键词 着舰标志识别 SSD网络 图像识别 深度残差网络 特征金字塔网络结构
在线阅读 下载PDF
改进Faster RCNN with FPN的素布瑕疵检测的算法研究 被引量:3
5
作者 马政 生鸿飞 《纺织工程学报》 2024年第2期84-96,共13页
纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFP... 纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFPN对于多尺度特征的融合能力,丰富各个特征层的上下文信息,引入跨尺度特征融合模块来改进特征金字塔网络结构。其次,为了更好的利用深层特征,加入尺度内特征交互模块来处理ResNet50输出的深层特征层,丰富高级特征层的语义信息。然后,为了增强对于极端尺寸瑕疵目标的检测能力,使用K-means++聚类和遗传算法,改进预设锚框。最后,由于素布瑕疵的尺寸较小,为了平衡正负样本,采用Focal Loss,增加对于素布瑕疵的检测效果。经过实验,使用COCO指标进行评价,该改进后的网络模型与Faster RCNNwithFPN相比,在mAP_(50)、mAP_(75)和mAP_(50:95)指标上分别提升6.5%、4.4%和4.0%,平均准确率有了明显提升,可以更好地完成素布瑕疵的检测任务。 展开更多
关键词 素布瑕疵检测 更快的区域卷积神经网络 改进特征金字塔网络结构 重新设计锚框 焦点损失
在线阅读 下载PDF
基于RFNA和改进LBD的镜像线特征匹配方法
6
作者 高于科 章伟 +1 位作者 胡陟 江鹏伟 《电子科技》 2023年第10期32-38,共7页
针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对... 针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。 展开更多
关键词 边缘链检测 RNFA 局部不变特征描述符 改进LBD 线特征匹配 镜像 图像金字塔 特征提取
在线阅读 下载PDF
基于改进ResNet的PMSM退磁与偏心故障诊断方法
7
作者 郭又铭 吴钦木 《无线电工程》 2024年第5期1294-1307,共14页
针对近年来对永磁同步电机故障诊断的需求,提高故障诊断的精度。提出了一种基于多尺度特征融合与空洞卷积金字塔模型的永磁同步电机诊断方法,可以通过电机运行时的定子电流数据直接对电机进行故障诊断。利用多尺度特征融合模块提取图像... 针对近年来对永磁同步电机故障诊断的需求,提高故障诊断的精度。提出了一种基于多尺度特征融合与空洞卷积金字塔模型的永磁同步电机诊断方法,可以通过电机运行时的定子电流数据直接对电机进行故障诊断。利用多尺度特征融合模块提取图像不同尺度、不同分辨率的特征,提高单一图像的信息利用率;通过在特征融合模块中添加注意力机制使网络中不同通道的特征权重保持高度一致,进一步确保了网络提取图像特征的能力;通过在空间池化金字塔中引入空洞卷积核来构建空洞卷积金字塔,在解决了网络对同一特征反复提取、节约计算成本的同时,增强了模型的感受野,提高模型对不同故障的诊断精度。实验结果表明,所提方法对不同类型的电机故障均具有较高的诊断精度。对比传统的智能算法,其算法精度与损失函数都得到了明显改进。 展开更多
关键词 永磁同步电机 改进ResNet 多尺度特征融合 空洞卷积金字塔 故障诊断
在线阅读 下载PDF
基于显著性引导增强与改进Faster-RCNN的遥感图像目标检测方法
8
作者 刘洋 时富斌 +1 位作者 王竹筠 徐晓淼 《沈阳航空航天大学学报》 2024年第6期50-60,共11页
目标检测作为遥感图像处理领域的关键任务之一,一直是遥感图像处理的研究热点。尽管深度学习方法在此领域取得了显著进展,但在应对遥感图像的尺度变化和复杂背景时,仍面临着不小的挑战,这在一定程度上限制了检测精度的进一步提升。为了... 目标检测作为遥感图像处理领域的关键任务之一,一直是遥感图像处理的研究热点。尽管深度学习方法在此领域取得了显著进展,但在应对遥感图像的尺度变化和复杂背景时,仍面临着不小的挑战,这在一定程度上限制了检测精度的进一步提升。为了解决这个问题,提出了一种创新的遥感图像目标检测方法,该方法融合了显著性引导的图像自适应融合模块,并对Faster-RCNN进行改进,提升目标检测的准确性。首先,在图像预处理阶段提出了一个基于显著性引导的图像自适应融合模块,有效地集成了图像的语义信息和浅层细粒度的细节,使模型能够优先考虑对象区域,同时最大限度地减少背景干扰。其次,在引入MobileNetV3作为Faster-RCNN的特征提取器后,提出了一个注意力增强特征金字塔网络,将注意力与上采样结合起来,进一步增强了目标特征并输出高质量的特征图,从而有效提升了多维特征的提取效果,为后续的目标检测任务提供了更为精准和丰富的特征信息。再次,设计了一个多尺度区域建议网络,这种设计能够更准确地捕获不同大小和形状对象的特征,进而增强特征的表达能力,有效提升目标的检测精度。最后,在DIOR和ROSD数据集上进行实验验证,所提出的网络模型相较于其他先进方法展现出了更高的检测精度,充分证明了其优越性和有效性。 展开更多
关键词 显著性引导图像 自适应融合 注意力增强特征 金字塔网络 改进Faster-RCNN 遥感图像 目标检测
在线阅读 下载PDF
基于改进YOLOv5的安全帽佩戴检测算法 被引量:2
9
作者 何凌波 陈西曲 《长江信息通信》 2022年第11期14-19,共6页
针对现有安全帽佩戴检测算法在复杂场景下存在密集目标检测难度大、小目标误检和漏检等问题,提出一种基于改进YOLOv5的安全帽佩戴检测算法。该算法主要在以下三个方面进行优化:通过在主干网络添加卷积块注意力模块(CBAM)来提取多个尺度... 针对现有安全帽佩戴检测算法在复杂场景下存在密集目标检测难度大、小目标误检和漏检等问题,提出一种基于改进YOLOv5的安全帽佩戴检测算法。该算法主要在以下三个方面进行优化:通过在主干网络添加卷积块注意力模块(CBAM)来提取多个尺度的全局特征信息,使模型在通道和空间上更关注主要信息,得到更丰富的高层语义信息;将特征融合网络中的路径聚合网络(PAN)改进为加权双向特征金字塔网络(BiFPN),实现特征信息双向跨尺度连接和加权融合;将边界框回归损失函数改进为EIOU损失函数,加快边界框收敛速度和提高目标识别准确率。在自制的安全帽佩戴检测数据集上进行实验验证的结果表明:改进后的算法平均准确率(mAP)达到92.8%,相较于YOLOv5算法,改进后的算法在目标检测精确度和召回率上分别提升2.4%和1.8%。 展开更多
关键词 安全帽佩戴检测 改进YOLOv5 卷积块注意力模块 加权双向特征金字塔网络 EIOU损失函数
在线阅读 下载PDF
基于跨模态注意力融合的煤炭异物检测方法 被引量:2
10
作者 曹现刚 李虎 +3 位作者 王鹏 吴旭东 向敬芳 丁文韬 《工矿自动化》 CSCD 北大核心 2024年第1期57-65,共9页
为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采... 为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采用浅层的特征提取策略提取Depth图像的低级特征,用深度边缘与深度纹理等基础特征辅助RGB图像深层特征,以有效获得2种特征的互补信息,从而丰富异物特征的空间与边缘信息,提高检测精度;构建了基于坐标注意力与改进空间注意力的跨模态注意力融合模块(CAFM),以协同优化并融合RGB特征与Depth特征,增强网络对特征图中被遮挡异物可见部分的关注度,提高被遮挡异物检测精度;使用区域卷积神经网络(R-CNN)输出煤炭异物的分类、回归与分割结果。实验结果表明:在检测精度方面,该方法的AP相较两阶段模型中较优的Mask transfiner高3.9%;在检测效率方面,该方法的单帧检测时间为110.5 ms,能够满足异物检测实时性需求。基于跨模态注意力融合的煤炭异物检测方法能够以空间特征辅助色彩、形状与纹理等特征,准确识别煤炭异物之间及煤炭异物与输送带之间的差异,从而有效提高对复杂特征异物的检测精度,减少误检、漏检现象,实现复杂特征下煤炭异物的精确检测与像素级分割。 展开更多
关键词 煤炭异物检测 实例分割 特征金字塔网络 跨模态注意力融合 Depth图像 坐标注意力 改进空间注意力
在线阅读 下载PDF
面向多复杂场景环境的敞车车号辨识研究
11
作者 薛峰 于国丞 +3 位作者 李世杰 凌烈鹏 张峰峰 陈峰炜 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1162-1169,共8页
针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深... 针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深度可分离卷积的敞车车号特征提取网络设计。提出基于改进卷积循环神经网络的车号定位识别模型,主要针对识别网络模型结构进行设计。通过不同环境下采集的敞车车厢图片对本文提出的方法进行验证。结果表明:本文提出的车号定位方法的准确率为0.94,车号识别的准确率为0.97。 展开更多
关键词 车号定位 深度可分离卷积 特征提取 改进卷积循环神经网络 特征金字塔 字符识别 铁路货运 深度学习
在线阅读 下载PDF
一种基于改进的YOLOv8的高压输电线路绝缘子缺陷检测方法
12
作者 赵永祥 张国庆 +1 位作者 罗巍 李晓亮 《无线电工程》 2025年第5期938-948,共11页
针对目前绝缘子缺陷目标检测算法中存在的误检、漏检和检测精度低等问题,提出一种基于改进YOLOv8的高压输电线路绝缘子缺陷检测方法,实现了高精度检测。在改进的YOLOv8模型中,基于可变形卷积神经网络(Deformable Convolutional Neural N... 针对目前绝缘子缺陷目标检测算法中存在的误检、漏检和检测精度低等问题,提出一种基于改进YOLOv8的高压输电线路绝缘子缺陷检测方法,实现了高精度检测。在改进的YOLOv8模型中,基于可变形卷积神经网络(Deformable Convolutional Neural Network,DCNN)和全局注意力机制(Global Attention Mechanism,GAM)设计了可变形注意力骨干网络,减少了特征提取过程中有效目标特征的丢失;基于卷积块注意力模块(Convolutional Block Attention Module,CBAM),提出改进的空间金字塔池化快速特征融合(Spatial Pyramid Pooling Fast Feature Fusion,SPFF)模块,结合高效通道注意力(Efficient Channel Attention,ECA)机制,扩大了模型的感受野,保留了更多类型的绝缘子缺陷特征信息,提高了检测精度;采用稳定交并比(Stable Intersection over Union,SIoU)损失函数,加快了模型的收敛速度,提升了对小目标缺陷的检测能力;构建了一个包含“Normal”“Defect”“Broke”“Flashover”四种类型的绝缘子缺陷数据集。实验结果表明,改进后的YOLOv8模型的平均精度均值(mean Average Precision,mAP)达到95.84%,较原YOLOv8提高了5.58%,在各类绝缘子上的AP值均显著优于其他算法。相比原始算法,改进后的YOLOv8模型在小目标缺陷检测方面的表现显著提升,进一步验证了所提算法在绝缘子缺陷检测中的可行性和有效性。 展开更多
关键词 绝缘子缺陷检测 深度学习 可变形注意力骨干网络 改进的空间金字塔池化快速特征融合模块 小目标缺陷检测
在线阅读 下载PDF
基于无人机航拍的绝缘子掉串实时检测研究 被引量:8
13
作者 李登攀 任晓明 颜楠楠 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期994-1003,共10页
由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络... 由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%. 展开更多
关键词 无人机 绝缘子掉串 双向特征金字塔网络结构 γ系数剪枝微调 DIoU损失函数 图像增强
在线阅读 下载PDF
多类场景下无人机航拍视频烟雾检测算法 被引量:2
14
作者 王殿伟 赵文博 +1 位作者 房杰 许志杰 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第10期122-129,共8页
在无人机航拍视频烟雾检测领域中,由于不同检测场景差异大,导致现有烟雾检测算法经常出现检测精度低、速度慢等问题。为了解决以上问题,建立了一个基于无人机视角的多类场景下的烟雾数据集(UAV smoke dataset,USD),并提出了一种改进YOLO... 在无人机航拍视频烟雾检测领域中,由于不同检测场景差异大,导致现有烟雾检测算法经常出现检测精度低、速度慢等问题。为了解决以上问题,建立了一个基于无人机视角的多类场景下的烟雾数据集(UAV smoke dataset,USD),并提出了一种改进YOLOx的多类场景下无人机视频烟雾检测算法。首先,在YOLOx网络模型中引入改进的注意力机制,分别改进通道特征和空间特征的提取过程,提取更加具有表征能力的烟雾特征;然后,提出一种双向特征融合模块,增强多尺度特征融合模块对小目标烟雾特征的融合能力;最后,引入Focal-EIOU损失函数,解决训练过程中出现正负样本不平衡,以及预测框和真实框不相交时无法反映两个框的距离远近和重合度大小等问题。实验结果表明,所提算法在应用于多类场景下无人机视频烟雾检测任务时具有较好的鲁棒性,对比多个经典烟雾检测算法,本文算法在不同数据集上的烟雾检测准确率均有不同的提升,比如对比原有的YOLOx-s模型,准确率提升2.7%,召回率提升3%,速度达到73.6帧/s。 展开更多
关键词 烟雾检测 无人机航拍视频 多场景 YOLOx 注意力机制 改进特征金字塔
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部