期刊文献+
共找到708篇文章
< 1 2 36 >
每页显示 20 50 100
基于改进模糊C-均值聚类算法的图像分割 被引量:3
1
作者 陈梅 王健 《现代电子技术》 2007年第13期180-181,共2页
在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提... 在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提下可以加速图像分割的收敛速度。实验表明,该算法不但能有效地提高聚类的速度,且能得到较好的分割效果。 展开更多
关键词 模糊 对手抑制式FCM算法 图像分割 改进FCM算法
在线阅读 下载PDF
基于超像素分割的模糊C-均值聚类证件水印分割算法研究
2
作者 张梅 王杰 《印刷与数字媒体技术研究》 北大核心 2025年第5期29-37,共9页
针对出入境证件上的传统水印分割问题,本研究提出了一种基于超像素分割的模糊C-均值聚类的水印分割方法。首先,超像素分割算法将水印图像划分为多个具有相似特征的小区域,大幅降低了后续处理的数据量,同时有效保留了图像的结构与细节信... 针对出入境证件上的传统水印分割问题,本研究提出了一种基于超像素分割的模糊C-均值聚类的水印分割方法。首先,超像素分割算法将水印图像划分为多个具有相似特征的小区域,大幅降低了后续处理的数据量,同时有效保留了图像的结构与细节信息,为模糊C-均值聚类提供了更具代表性的样本。然后,模糊C-均值聚类算法充分发挥其处理数据模糊性的优势,对超像素块进行聚类分析,准确地将水印区域从背景中分离出来。实验结果表明,该方法在复杂背景下,依然能有效地提取出清晰的水印区域,从而在出入境证件传统水印分割领域展现出实用性和有效性。这对于传统水印图像的处理具有重要意义,为后续水印的识别、保护与分析提供了强有力的支持。 展开更多
关键词 传统水印 图像分割 模糊c-均值 超像素分割
在线阅读 下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:2
3
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
4
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值聚类算法 FCM算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
5
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
6
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊C均值 SMO算法
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
7
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值算法 粒子群优化算法 粒子
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
8
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 分析 模糊c-均值 蚁群算法 量子计算
在线阅读 下载PDF
改进的模糊C-均值聚类算法研究 被引量:41
9
作者 齐淼 张化祥 《计算机工程与应用》 CSCD 北大核心 2009年第20期133-135,共3页
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作... 为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 展开更多
关键词 模糊c-均值 权值
在线阅读 下载PDF
改进的基于模糊C-均值聚类的图像分割算法 被引量:11
10
作者 王志兵 鲁瑞华 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期169-172,共4页
为了提高图像分割算法的抗噪声性能,提出了一种改进的基于模糊C-均值聚类的图像分割算法.该算法首先根据邻域像素的隶属度矩阵来计算出像素和聚类中心的空间距离,然后利用空间距离和欧氏距离来重新确定像素和聚类中心的距离,最后利用新... 为了提高图像分割算法的抗噪声性能,提出了一种改进的基于模糊C-均值聚类的图像分割算法.该算法首先根据邻域像素的隶属度矩阵来计算出像素和聚类中心的空间距离,然后利用空间距离和欧氏距离来重新确定像素和聚类中心的距离,最后利用新提取的距离特征和改进的FCM聚类算法对图像进行分割.实验结果表明,该算法能有效地提取目标图像,对噪声具有较强的鲁棒性,收敛速度快. 展开更多
关键词 空间距离 欧氏距离 模糊c-均值 图像分割
在线阅读 下载PDF
IFCM:改进的区间值数据的模糊C-均值聚类算法 被引量:2
11
作者 张忠平 陈丽萍 王爱杰 《计算机工程与设计》 CSCD 北大核心 2008年第24期6320-6322,共3页
对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考... 对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考虑了区间大小对聚类结果的影响,同时也能发现不规则的聚类子集,使聚类结果更加准确。 展开更多
关键词 区间值数据 模糊c-均值 IFCM算法 自适应系数 原型
在线阅读 下载PDF
一种改进的模糊C-均值聚类算法 被引量:8
12
作者 曹易 张宁 《上海理工大学学报》 CAS 北大核心 2012年第4期351-354,共4页
由于现有模糊C-均值聚类算法固有的局限性,本文提出了一种改进的模糊C-均值聚类算法.首先用概率密度函数来确定初始聚类中心点和聚类数,其次用竞争学习思想提出使对手增加抑制因子来修改隶属度得到加快收敛速度的效果,最后提出用一个类... 由于现有模糊C-均值聚类算法固有的局限性,本文提出了一种改进的模糊C-均值聚类算法.首先用概率密度函数来确定初始聚类中心点和聚类数,其次用竞争学习思想提出使对手增加抑制因子来修改隶属度得到加快收敛速度的效果,最后提出用一个类内差异与类间差异兼备的新的有效性指标来作为迭代条件的目标函数.通过实验获取参数的最优取值范围,通过与经典模糊C-均值聚类算法的比较,证明了该改进算法不仅加快了收敛速度,而且在聚类结果的质量上有一定程度的提高. 展开更多
关键词 模糊c-均值 概率密度 隶属度 有效性指标
在线阅读 下载PDF
基于改进的模糊c-均值聚类算法的负荷特性指标分析与分类 被引量:3
13
作者 李文华 贾玉雯 范新涛 《燕山大学学报》 CAS 北大核心 2016年第3期230-235,共6页
负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法... 负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法。该算法在聚类分割迭代中采用加权欧氏距离,对每种聚类中心进行负荷特性指标分析,并对各类别中的负荷采用不同控制方法。最后分类结果表明,所提方法使各分类中负荷具有较高相似性,为后续负荷的预测和控制奠定了基础。 展开更多
关键词 负荷分 模糊c-均值算法 加权欧氏距离 负荷特性指标
在线阅读 下载PDF
基于改进的模糊C-均值的分级递减聚类算法 被引量:2
14
作者 王连亮 陈怀新 《系统工程与电子技术》 EI CSCD 北大核心 2005年第7期1304-1306,F0003,共4页
提出了基于改进的模糊C-均值的分级递减聚类算法,利用改进的模糊C-均值聚类算法寻找类中心,再自适应确定该类中心的隶属度阈值,将聚类进行分级处理,实现未知类数数据集的聚类。实验结果表明,本算法对未知类数、具有高斯分布的数据集具... 提出了基于改进的模糊C-均值的分级递减聚类算法,利用改进的模糊C-均值聚类算法寻找类中心,再自适应确定该类中心的隶属度阈值,将聚类进行分级处理,实现未知类数数据集的聚类。实验结果表明,本算法对未知类数、具有高斯分布的数据集具有聚类效果好、收敛快的特点,且对于类数较多的数据集,本算法也是一种快速聚类算法。 展开更多
关键词 非监督 模糊c-均值 分级递减 收敛
在线阅读 下载PDF
基于改进QPSO的模糊C-均值聚类算法 被引量:3
15
作者 杨照峰 时合生 《现代电子技术》 2014年第7期118-120,共3页
针对模糊C-均值聚类算法容易陷入局部极值等缺陷,提出了基于改进QPSO的模糊C-均值聚类,算法利用QPSO的优点,并对量子门更新策略进行了改进。实验结果显示该算法提高了模糊聚类算法的聚类效果以及搜索能力,在全局寻优能力、跳出局部最优... 针对模糊C-均值聚类算法容易陷入局部极值等缺陷,提出了基于改进QPSO的模糊C-均值聚类,算法利用QPSO的优点,并对量子门更新策略进行了改进。实验结果显示该算法提高了模糊聚类算法的聚类效果以及搜索能力,在全局寻优能力、跳出局部最优能力、收敛速度等方面具有优势。 展开更多
关键词 模糊c-均值 量子粒子群优化 分析 量子门更新策略
在线阅读 下载PDF
一种改进的模糊C-均值聚类算法 被引量:5
16
作者 李柏年 《计算机应用与软件》 CSCD 北大核心 2008年第6期98-99,共2页
模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分... 模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分类结果与嵌入遗传算法的分类基本一致,而且通过非参数检验证实分类效果良好。 展开更多
关键词 模糊c-均值 遗传算法 非参数检验
在线阅读 下载PDF
基于改进人工蜂群的模糊C-均值聚类算法 被引量:7
17
作者 徐曼舒 汪继文 +1 位作者 邱剑锋 王心灵 《计算机工程与科学》 CSCD 北大核心 2016年第6期1238-1243,共6页
模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、... 模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、多峰问题容易陷入局部最优等问题,通过引入差分进化算法中变异和交叉思想,改善蜂群算法的收敛速度,平衡局部搜索和全局搜索能力。然后将改进的人工蜂群算法和模糊C-均值聚类算法结合得到基于改进人工蜂群的模糊C-均值聚类算法,并在多个国际标准数据集上进行验证,实验结果表明此算法在多个衡量指标上取得了明显的改进。 展开更多
关键词 模糊c-均值 人工蜂群算法 差分进化算法 变异 交叉
在线阅读 下载PDF
一种改进的局部模糊C-均值聚类分割算法研究 被引量:3
18
作者 刘梦娇 吴成茂 《计算机科学》 CSCD 北大核心 2015年第S1期190-194 202,202,共6页
为了改善复杂图像的分割精度和抗噪性,充分考虑像素邻域信息的模糊聚类分割法已引起学者们的高度重视。针对希腊学者Krinidis和我国学者公茂果等提出的鲁棒模糊局部信息C-均值聚类分割算法的聚类迭代表达式缺乏严格理论推导的不足,利用... 为了改善复杂图像的分割精度和抗噪性,充分考虑像素邻域信息的模糊聚类分割法已引起学者们的高度重视。针对希腊学者Krinidis和我国学者公茂果等提出的鲁棒模糊局部信息C-均值聚类分割算法的聚类迭代表达式缺乏严格理论推导的不足,利用拉格朗日乘子法将鲁棒模糊局部C-均值聚类所对应的聚类目标函数及其约束条件转化为无约束优化问题,通过求解其极值存在的偏导数等于零的条件方程组得到新的隶属度和聚类中心表达式,然后构造相应聚类分割图像的新算法。人工合成图像和遥感图像的分割测试表明,所建议的改进局部模糊均值聚类分割算法是合理的,比现有的鲁棒模糊局部信息C-均值聚类分割算法更适合复杂图像分割需要。 展开更多
关键词 模糊 鲁棒模糊c-均值 图像分割
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法 被引量:1
19
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 K调和均值 收敛性
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
20
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊 模糊c-均值算法
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部