期刊文献+
共找到225篇文章
< 1 2 12 >
每页显示 20 50 100
一种融合遗传算法和粒子群算法的改进模糊C-均值算法 被引量:4
1
作者 诸克军 李兰兰 郭海湘 《系统管理学报》 CSSCI 北大核心 2011年第6期728-733,共6页
针对模糊C-均值(FCM)算法必须预先给定聚类数c和容易陷入局部极小的缺点,提出了融合遗传算法和粒子群算法的GA-PSO-FCM算法。遗传算法(GA)嵌套在FCM算法的外层,用于自动寻找最优聚类数,并把有效性准则函数作为其适应度函数;粒子群(PSO)... 针对模糊C-均值(FCM)算法必须预先给定聚类数c和容易陷入局部极小的缺点,提出了融合遗传算法和粒子群算法的GA-PSO-FCM算法。遗传算法(GA)嵌套在FCM算法的外层,用于自动寻找最优聚类数,并把有效性准则函数作为其适应度函数;粒子群(PSO)算法嵌套在FCM算法的内层,用于优化类中心向量,提高算法的全局搜索能力。最后,运用GA-PSO-FCM算法对Iris data、Wine data、Zoo data、WPBC data和WDBC data进行仿真实验,并与基于有效性准则函数改进的FCM算法、GA-FCM算法的仿真结果进行比较,表明GA-PSO-FCM算法能在预先未知聚类数的情况下,提高分类结果的精确性和稳定性。 展开更多
关键词 模糊c-均值 有效性准则 遗传算法 粒子群算法
在线阅读 下载PDF
基于改进蜣螂优化模糊C均值的WSN分簇路由算法
2
作者 刘晓悦 郑新颖 《仪表技术与传感器》 北大核心 2025年第1期105-111,126,共8页
针对无线传感器网络能耗不均、生存周期短的问题,提出一种基于改进蜣螂优化模糊C均值的WSN分簇路由算法(IDFCA)。分簇阶段,采用改进蜣螂算法优化模糊C均值、初始聚类中心的选取,根据距离以及网络最优簇头个数划分网络拓扑结构,以均衡各... 针对无线传感器网络能耗不均、生存周期短的问题,提出一种基于改进蜣螂优化模糊C均值的WSN分簇路由算法(IDFCA)。分簇阶段,采用改进蜣螂算法优化模糊C均值、初始聚类中心的选取,根据距离以及网络最优簇头个数划分网络拓扑结构,以均衡各簇内节点能耗;簇头选举阶段,综合考虑节点能量和距离,并设置簇头更换阈值,降低簇头更换频率,减少网络能耗;数据传输阶段,利用改进的蜣螂算法,基于能量、负载和转发方向搜索簇头到基站的最优传输路径。仿真结果表明:IDFCA算法的网络相比于LEACH、CS-K、POFCA分别提高了56.1%、26.1%、14.6%。IDFCA算法能够均衡网络能耗,延长网络生命周期。 展开更多
关键词 无线传感器网络 改进蜣螂优化算法 模糊C均值 分簇路由算法 能量均衡
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
3
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值聚类算法 FCM聚类算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
4
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值聚类算法 粒子群优化算法 聚类 粒子
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
5
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 聚类分析 模糊c-均值聚类 蚁群算法 量子计算
在线阅读 下载PDF
IFCM:改进的区间值数据的模糊C-均值聚类算法 被引量:2
6
作者 张忠平 陈丽萍 王爱杰 《计算机工程与设计》 CSCD 北大核心 2008年第24期6320-6322,共3页
对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考... 对基于区间值数据的模糊聚类算法进行了研究,介绍了具有控制区间大小对聚类结果影响的加权因子的模糊C-均值聚类新算法。针对区间值数据模糊C-均值聚类新算法提出了一个适应距离的弹性系数,使算法得到改进,既能利用传统的FCM算法,又考虑了区间大小对聚类结果的影响,同时也能发现不规则的聚类子集,使聚类结果更加准确。 展开更多
关键词 区间值数据 模糊c-均值聚类 IFCM算法 自适应系数 聚类原型
在线阅读 下载PDF
改进的模糊C-均值算法在医学图像分割中的应用 被引量:3
7
作者 程显毅 巩向普 《智能系统学报》 2010年第1期80-84,共5页
针对随机选取聚类中心易使得迭代过程陷入局部最优解的缺点,提出了一种混合优化蚁群和动态模糊C-均值的图像分割方法,该方法利用蚁群算法较强处理局部极值的能力,并能动态确定聚类中心和数目.针对传统的分阶段结合遗传算法和蚁群算法的... 针对随机选取聚类中心易使得迭代过程陷入局部最优解的缺点,提出了一种混合优化蚁群和动态模糊C-均值的图像分割方法,该方法利用蚁群算法较强处理局部极值的能力,并能动态确定聚类中心和数目.针对传统的分阶段结合遗传算法和蚁群算法的策略存在收敛速度慢,聚类精度差的问题,提出在整个优化过程综合遗传算法和蚁群算法,并在蚁群算法中引入拥挤度函数,利用遗传算法的快速性、全局收敛性提高了蚁群算法的收敛速度,同时利用蚁群算法的并行性和正反馈性提高了聚类的精确度.最后将该算法应用到医学图像分割,对比实验表明,混合算法具有很强的模糊边缘和微细边缘分割能力. 展开更多
关键词 蚁群算法 医学图像分割 模糊c-均值聚类 遗传算法
在线阅读 下载PDF
基于改进的模糊c-均值聚类算法的负荷特性指标分析与分类 被引量:3
8
作者 李文华 贾玉雯 范新涛 《燕山大学学报》 CAS 北大核心 2016年第3期230-235,共6页
负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法... 负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法。该算法在聚类分割迭代中采用加权欧氏距离,对每种聚类中心进行负荷特性指标分析,并对各类别中的负荷采用不同控制方法。最后分类结果表明,所提方法使各分类中负荷具有较高相似性,为后续负荷的预测和控制奠定了基础。 展开更多
关键词 负荷分类 模糊c-均值聚类算法 加权欧氏距离 负荷特性指标
在线阅读 下载PDF
一种改进的模糊C-均值聚类算法 被引量:5
9
作者 李柏年 《计算机应用与软件》 CSCD 北大核心 2008年第6期98-99,共2页
模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分... 模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分类结果与嵌入遗传算法的分类基本一致,而且通过非参数检验证实分类效果良好。 展开更多
关键词 模糊c-均值聚类 遗传算法 非参数检验
在线阅读 下载PDF
基于极坐标特征的改进模糊C-均值虹膜定位算法
10
作者 王洋 庞彦尼 左平 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第3期515-518,共4页
针对非理想情况下虹膜图像定位失败的问题,提出一种新的虹膜定位算法.该算法先使用基于极坐标特征的改进模糊C-均值算法对虹膜外圆半径进行粗定位,再采用圆周差分法对外圆参数进行准确计算.该算法通过使用极坐标作为聚类特征及放宽模糊... 针对非理想情况下虹膜图像定位失败的问题,提出一种新的虹膜定位算法.该算法先使用基于极坐标特征的改进模糊C-均值算法对虹膜外圆半径进行粗定位,再采用圆周差分法对外圆参数进行准确计算.该算法通过使用极坐标作为聚类特征及放宽模糊聚类的聚类条件,提高了虹膜定位算法的鲁棒性.实验结果表明,该方法有效提高了非理想情况下虹膜图像的定位精度. 展开更多
关键词 虹膜定位 虹膜鉴别 极坐标变换 改进模糊c-均值
在线阅读 下载PDF
基于改进人工蜂群的模糊C-均值聚类算法 被引量:7
11
作者 徐曼舒 汪继文 +1 位作者 邱剑锋 王心灵 《计算机工程与科学》 CSCD 北大核心 2016年第6期1238-1243,共6页
模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、... 模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、多峰问题容易陷入局部最优等问题,通过引入差分进化算法中变异和交叉思想,改善蜂群算法的收敛速度,平衡局部搜索和全局搜索能力。然后将改进的人工蜂群算法和模糊C-均值聚类算法结合得到基于改进人工蜂群的模糊C-均值聚类算法,并在多个国际标准数据集上进行验证,实验结果表明此算法在多个衡量指标上取得了明显的改进。 展开更多
关键词 模糊c-均值聚类 人工蜂群算法 差分进化算法 变异 交叉
在线阅读 下载PDF
基于模糊C-均值的改进人工蜂群聚类算法 被引量:10
12
作者 何嘉婧 王晋东 于智勇 《计算机应用研究》 CSCD 北大核心 2016年第5期1342-1345,共4页
传统的模糊C-均值聚类算法存在对初始聚类中心选择与噪声数据敏感,容易使目标函数陷入局部最优的问题,以及标准人工蜂群算法局部搜索能力及开发能力不强的缺点。针对这些问题,引进差分进化的思想改进人工蜂群算法并对跟随蜂的搜索行为... 传统的模糊C-均值聚类算法存在对初始聚类中心选择与噪声数据敏感,容易使目标函数陷入局部最优的问题,以及标准人工蜂群算法局部搜索能力及开发能力不强的缺点。针对这些问题,引进差分进化的思想改进人工蜂群算法并对跟随蜂的搜索行为进行更准确的描述,结合模糊C-均值聚类算法具有收敛速度快、易于实现且局部搜索能力较强的优点,提出一种基于模糊C-均值的改进人工蜂群聚类算法以提高聚类的性能。实验结果表明,该算法相对于传统FCM聚类算法,其准确率和抗噪性有所提高,聚类效果更好。 展开更多
关键词 人工蜂群算法 模糊c-均值 聚类分析 差分进化 搜索方程
在线阅读 下载PDF
基于改进蝙蝠优化自确定的模糊C-均值聚类算法 被引量:9
13
作者 汤正华 《计量学报》 CSCD 北大核心 2020年第4期505-512,共8页
针对模糊C-均值聚类算法敏感于初始聚类中心及聚类收敛慢、聚类数目手动设定等缺陷,提出了基于改进蝙蝠优化自确定的模糊C-均值聚类算法。该算法是基于密度峰值综合衡量聚类中心外围数据密集程度和聚类中心间距离,自动确定聚类中心和聚... 针对模糊C-均值聚类算法敏感于初始聚类中心及聚类收敛慢、聚类数目手动设定等缺陷,提出了基于改进蝙蝠优化自确定的模糊C-均值聚类算法。该算法是基于密度峰值综合衡量聚类中心外围数据密集程度和聚类中心间距离,自动确定聚类中心和聚类数目,以此作为改进蝙蝠算法的初始中心;在原始蝙蝠算法中引入Levy飞行特征加强算法跳出局部最优能力;使用Powell局部搜索加快算法的收敛,利用改进的蝙蝠种群进行种群寻优,并将最优蝙蝠位置作为聚类C-均值新聚类中心,进行模糊聚类,以此循环交叉迭代多次最终获得聚类结果。将基于改进蝙蝠优化自确定的模糊C-均值聚类算法与其它两种聚类算法在标准数据集上进行仿真对比,实验结果表明:与其它两种算法相比,该算法收敛速度快、误差率低。 展开更多
关键词 计量学 模糊c-均值聚类 蝙蝠算法 Levy飞行 Powell局部搜索 密度峰值 自动确定
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
14
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊聚类 模糊c-均值算法
在线阅读 下载PDF
点密度函数加权模糊C-均值算法的聚类分析 被引量:30
15
作者 刘小芳 曾黄麟 吕炳朝 《计算机工程与应用》 CSCD 北大核心 2004年第24期64-65,96,共3页
基于模糊C-均值算法具有对数据集进行等划分趋势的缺陷,文章利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种新的加权模糊C-均值算法,该方法不仅在一定程度上克服了模糊C-均值算法的缺陷,而且具有良好的收敛性。
关键词 模糊c-均值算法 点密度函数 加权 模糊聚类分析
在线阅读 下载PDF
基于自适应模糊C-均值的增量式聚类算法 被引量:11
16
作者 张忠平 陈丽萍 +1 位作者 王爱杰 林志杰 《计算机工程》 CAS CSCD 北大核心 2009年第6期60-62,65,共4页
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观... 针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。 展开更多
关键词 聚类分析 模糊c-均值算法 增量式聚类 AIFCM算法
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
17
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 聚类 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值聚类(FCMBMD)算法
在线阅读 下载PDF
基于模糊C-均值算法粗糙集理论的云模型在岩爆等级评价中的应用 被引量:25
18
作者 郝杰 侍克斌 +2 位作者 王显丽 白现军 陈功民 《岩土力学》 EI CAS CSCD 北大核心 2016年第3期859-866,874,共9页
岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大... 岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大的切向应力σ_θ、岩石单轴抗拉强度σ_t和岩石弹性能量指数W_(et)作为岩爆等级评价因子,依据岩爆分级标准计算各评价因子隶属于不同岩爆等级的云数字特征。同时,以国内外40例岩爆工程为研究对象,运用基于FCM算法的粗糙度理论进行因子属性重要性评价,计算各评价因子权重。根据正向正态云发生器,得到待评样本的综合确定度,由最大综合确定度判定岩爆级别。研究表明:该模型的评价结果与实际情况基本一致,具有一定的可行性,为岩爆预测提供了一种新的研究方法与思路。 展开更多
关键词 岩爆等级评价 云模型 粗糙集 模糊c-均值(FCM)算法 综合确定度
在线阅读 下载PDF
模糊c-均值算法和万有引力算法求解模糊聚类问题 被引量:14
19
作者 谷文祥 郭丽萍 殷明浩 《智能系统学报》 2011年第6期520-525,共6页
针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算... 针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算法(FGSA)和模糊c-均值算法(FCM)的基础上,提出了一种新算法(FGSAFCM)来求解模糊聚类问题,有效避免了单纯使用模糊c-均值算法时对初始值敏感且易于陷入局部最优的缺点.采用目标函数和有效性评价函数作为评价标准,选取10个经典数据集作为测试数据,实验结果表明,新算法比单一的模糊c-均值算法有更高的准确性和鲁棒性. 展开更多
关键词 模糊聚类 模糊c-均值算法 万有引力搜索算法 模糊万有引力搜索算法
在线阅读 下载PDF
基于粒子群模糊C-均值聚类的图像分割算法 被引量:12
20
作者 李丽丽 李明 刘希玉 《计算机工程与应用》 CSCD 北大核心 2009年第31期158-160,共3页
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-... 模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 展开更多
关键词 图像分割 粒子群优化算法 模糊c-均值聚类算法 全局优化
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部