期刊文献+
共找到554篇文章
< 1 2 28 >
每页显示 20 50 100
基于改进模糊C均值聚类算法的云计算入侵检测方法 被引量:10
1
作者 刘绪崇 陆绍飞 +1 位作者 赵薇 张悦 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第7期2320-2325,共6页
针对标准模糊C均值聚类算法(FCM)在云计算平台下的入侵检测中存在检测精度不高等问题,提出一种基于目标函数优化模糊C均值聚类算法的云计算入侵检测模型。该模型采用核函数增强FCM算法的寻优能力,根据Mercer核定义优化FCM算法的目标函数... 针对标准模糊C均值聚类算法(FCM)在云计算平台下的入侵检测中存在检测精度不高等问题,提出一种基于目标函数优化模糊C均值聚类算法的云计算入侵检测模型。该模型采用核函数增强FCM算法的寻优能力,根据Mercer核定义优化FCM算法的目标函数,使用拉格朗日数乘法求得聚类中心和隶属度矩阵,有效降低算法的复杂度。研究结果表明:所提出的基于目标函数优化的FCM算法与传统的FCM算法相比,对云计算网络入侵检测的准确率较高,具有更好的收敛性能。 展开更多
关键词 云计算网络 入侵检测 模糊c均值 目标函数优化 拉格朗日数乘法
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法
2
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 分析 隐私保护 本地差分隐私 模糊c均值 拉普拉斯机制
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
3
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值 SMO算法
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
4
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:1
5
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊c均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
6
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值算法 FcM算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
改进混合蛙跳算法优化的产品族模糊C均值聚类设计方法 被引量:4
7
作者 崔文华 刘晓冰 +1 位作者 王伟 王介生 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第5期760-765,共6页
研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断... 研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断算子和拼接算子用来对个体进行重新组合而形成新个体,采用ISODATA迭代算法进行局部寻优.通过对纸币清分机进行的产品族设计的仿真研究,表明所提方法为产品族模块化设计提供了定量数学分析和快速配置的理论依据. 展开更多
关键词 纸币清分机 产品族 产品平台 混合蛙跳算法 模糊c均值
在线阅读 下载PDF
基于改进的模糊C均值聚类算法的颗粒种子图像分割方法 被引量:5
8
作者 王宇 陈婧 王高 《中北大学学报(自然科学版)》 CAS 2018年第2期177-182,共6页
针对利用模糊C均值聚类(FCM)算法进行农作物颗粒种子数字图像分割时的噪声敏感性问题,提出在传统FCM算法的目标函数中加入惩罚项来表示邻域像素值影响的方法,即利用图像的空间信息提高聚类准确性,并通过像素距离因子来修饰空间作用的方... 针对利用模糊C均值聚类(FCM)算法进行农作物颗粒种子数字图像分割时的噪声敏感性问题,提出在传统FCM算法的目标函数中加入惩罚项来表示邻域像素值影响的方法,即利用图像的空间信息提高聚类准确性,并通过像素距离因子来修饰空间作用的方法,进行距离模糊加权因子对目标函数的改进.实验结果表明,利用改进的FCM算法在将颗粒种子图像从背景图像中分割出来时,抗噪声性能比传统FCM算法更好,程序运行耗时节省一半左右,准确率从93%提高到99%,为下一步利用机器视觉系统进行颗粒种子计数检测打下良好基础. 展开更多
关键词 颗粒种子图像 图像分割 K-MEANS算法 模糊c均值(FcM)算法
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
9
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊c有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
10
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊c均值 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
一种改进的模糊C-均值聚类算法在说话人识别中的应用 被引量:4
11
作者 杨彦 赵力 《电声技术》 2006年第1期40-43,共4页
提出了一种将改进的FCM聚类算法与矢量量化相结合的说话人识别的方法。先从语音信号中提取待识别的特征矢量集,再利用矢量量化来设计码本,最后用改进的算法对待识别语音进行辩识。该算法解决了FCM算法对初始值敏感、易陷入局部最优的问... 提出了一种将改进的FCM聚类算法与矢量量化相结合的说话人识别的方法。先从语音信号中提取待识别的特征矢量集,再利用矢量量化来设计码本,最后用改进的算法对待识别语音进行辩识。该算法解决了FCM算法对初始值敏感、易陷入局部最优的问题。所使用的特征参数较少,计算比较简单,但识别率较高,且具有较好的鲁棒性。 展开更多
关键词 模糊c均值 矢量量化 说话人识别
在线阅读 下载PDF
基于改进模糊C-均值聚类算法的图像分割 被引量:3
12
作者 陈梅 王健 《现代电子技术》 2007年第13期180-181,共2页
在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提... 在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提下可以加速图像分割的收敛速度。实验表明,该算法不但能有效地提高聚类的速度,且能得到较好的分割效果。 展开更多
关键词 模糊 对手抑制式FcM算法 图像分割 改进FcM算法
在线阅读 下载PDF
改进的模糊C-均值聚类算法在气测资料解释中的应用 被引量:2
13
作者 薛磊 白康生 程起才 《石油矿场机械》 2008年第4期62-65,共4页
提出了一种用于气测资料解释的改进的模糊C-均值算法。首先,基于气测资料构造适当的综合指标得到样本数据集;其次,根据最大最小距离算法的思想对样本数据集进行粗聚类,再利用粗聚类得到的聚类中心为初始聚类中心,执行标准模糊C-均值算法... 提出了一种用于气测资料解释的改进的模糊C-均值算法。首先,基于气测资料构造适当的综合指标得到样本数据集;其次,根据最大最小距离算法的思想对样本数据集进行粗聚类,再利用粗聚类得到的聚类中心为初始聚类中心,执行标准模糊C-均值算法,得到各类储层的标准模式;最后,按照最小距离原则对待判别储层进行分类。结果表明,该方法简单、准确率较高、稳定性好,优于标准的FCM算法。 展开更多
关键词 气测 模糊 模糊c-均值算法
在线阅读 下载PDF
改进模糊聚类下电力多源异构数据动态挖掘
14
作者 王震峰 《电子设计工程》 2025年第9期125-129,134,共6页
为了提高电力多源异构数据动态挖掘效果及结果可靠性,采用了改进模糊聚类方法。引入隶属度函数,以更好地描述电力数据的不确定性。为了更准确地描述多源异构电力数据样本间的相似度,利用加权马氏距离替代模糊C均值聚类算法中的欧氏距离... 为了提高电力多源异构数据动态挖掘效果及结果可靠性,采用了改进模糊聚类方法。引入隶属度函数,以更好地描述电力数据的不确定性。为了更准确地描述多源异构电力数据样本间的相似度,利用加权马氏距离替代模糊C均值聚类算法中的欧氏距离,从而提升动态挖掘的精度。此外,结合蚁群算法,确定模糊C均值聚类算法的初始聚类中心与聚类中心数量,进一步改进算法,并成功应用于电力多源异构数据的动态挖掘。通过实验验证,该方法在电力系统数据集中能够有效地进行动态挖掘,分析电力用户的用电模式,并且在不同异常值比例下均表现出较高的斯皮尔曼等级相关系数,证明了其动态挖掘结果的可靠性。 展开更多
关键词 改进模糊 电力数据 多源异构 动态挖掘 马氏距离 蚁群算法
在线阅读 下载PDF
基于蚁群算法的模糊C均值聚类的改进研究 被引量:6
15
作者 高晋凯 侯文 +1 位作者 杨冰倩 王贇贇 《现代雷达》 CSCD 北大核心 2016年第11期30-34,39,共6页
在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。... 在图像分割的研究中,模糊C均值(FCM)聚类算法较之前的硬聚类有了很大的改进,是一种基于函数最优方法的聚类算法,然而传统的FCM算法的聚类中心及个数难以确定,搜索过程易陷入局部最优。因此,提出一种基于蚁群算法的改进的FCM聚类算法。该算法利用了蚁群算法全局优化特征以及较强鲁棒性的特点,将通过蚁群算法得到的聚类中心及个数应用到传统FCM算法中,弥补了传统FCM聚类算法的不足。该算法对图像进行分块处理,并引入多尺度梯度,提高了图像分割的准确性,最后通过实验验证了该算法的有效性及实用性。 展开更多
关键词 图像分割 蚁群算法 模糊c均值 梯度
在线阅读 下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:36
16
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊c均值算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
在线阅读 下载PDF
改进的模糊C-均值聚类方法 被引量:12
17
作者 牛强 夏士雄 +1 位作者 周勇 张磊 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1257-1259,1272,共4页
该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验... 该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验表明,将改进的遗传算法与FCM算法结合起来进行聚类分析,可以在一定程度上避免FCM算法对初始值敏感和容易陷入局部最优解的缺陷,使聚类更合理,比单一使用FCM算法进行聚类分析的效果要好。 展开更多
关键词 c均值算法 模糊 遗传算法 优化计算
在线阅读 下载PDF
基于模糊C均值聚类和支持向量机算法的燃煤锅炉结渣特性预测 被引量:11
18
作者 王宏武 孙保民 +2 位作者 张振星 信晶 康志忠 《动力工程学报》 CAS CSCD 北大核心 2014年第2期91-96,共6页
应用基于模糊C均值聚类算法预处理的支持向量机算法对锅炉结渣特性进行预测建模,将煤的软化温度、碱酸比、硅铝比和硅比以及无因次炉膛烟气平均温度和无因次实际切圆直径作为模型的输入变量,结渣程度作为输出变量,利用优化后的模型对10... 应用基于模糊C均值聚类算法预处理的支持向量机算法对锅炉结渣特性进行预测建模,将煤的软化温度、碱酸比、硅铝比和硅比以及无因次炉膛烟气平均温度和无因次实际切圆直径作为模型的输入变量,结渣程度作为输出变量,利用优化后的模型对10台锅炉的结渣特性进行评判.结果表明:该模型能够减小训练样本的过拟合度,具有较强的泛化能力;本试验中FCM-SVM预测模型预测结果的正确率为100%,可以实现对锅炉结渣特性的精确预测. 展开更多
关键词 燃煤锅炉 结渣 支持向量机 模糊c均值算法 预测
在线阅读 下载PDF
基于改进蝙蝠优化自确定的模糊C-均值聚类算法 被引量:9
19
作者 汤正华 《计量学报》 CSCD 北大核心 2020年第4期505-512,共8页
针对模糊C-均值聚类算法敏感于初始聚类中心及聚类收敛慢、聚类数目手动设定等缺陷,提出了基于改进蝙蝠优化自确定的模糊C-均值聚类算法。该算法是基于密度峰值综合衡量聚类中心外围数据密集程度和聚类中心间距离,自动确定聚类中心和聚... 针对模糊C-均值聚类算法敏感于初始聚类中心及聚类收敛慢、聚类数目手动设定等缺陷,提出了基于改进蝙蝠优化自确定的模糊C-均值聚类算法。该算法是基于密度峰值综合衡量聚类中心外围数据密集程度和聚类中心间距离,自动确定聚类中心和聚类数目,以此作为改进蝙蝠算法的初始中心;在原始蝙蝠算法中引入Levy飞行特征加强算法跳出局部最优能力;使用Powell局部搜索加快算法的收敛,利用改进的蝙蝠种群进行种群寻优,并将最优蝙蝠位置作为聚类C-均值新聚类中心,进行模糊聚类,以此循环交叉迭代多次最终获得聚类结果。将基于改进蝙蝠优化自确定的模糊C-均值聚类算法与其它两种聚类算法在标准数据集上进行仿真对比,实验结果表明:与其它两种算法相比,该算法收敛速度快、误差率低。 展开更多
关键词 计量学 模糊c-均值 蝙蝠算法 Levy飞行 Powell局部搜索 密度峰值 自动确定
在线阅读 下载PDF
基于Gibbs随机场与模糊C均值聚类的图像分割新算法 被引量:35
20
作者 冯衍秋 陈武凡 +1 位作者 梁斌 林亚忠 《电子学报》 EI CAS CSCD 北大核心 2004年第4期645-647,共3页
模拟C均值聚类(FCM)是一种非常经典的非监督聚类技术,已被广泛用于图像的自动分割.由于传统的FCM算法进行图像分割仅利用了灰度信息,而没有考虑象素的空间位置信息,因而分割模型是不完整的,造成传统FCM算法只适用于分割噪声含量很低的图... 模拟C均值聚类(FCM)是一种非常经典的非监督聚类技术,已被广泛用于图像的自动分割.由于传统的FCM算法进行图像分割仅利用了灰度信息,而没有考虑象素的空间位置信息,因而分割模型是不完整的,造成传统FCM算法只适用于分割噪声含量很低的图像.为了克服传统FCM算法的局限性,本文利用Gibbs随机场所描述的邻域关系属性,引入先验空间约束信息,提出拒纳度的概念,建立包含灰度信息与空间信息的新聚类目标函数,继而提出基于Gibbs随机场与模糊C平均聚类的GFCM图像分割新算法.实验证明,利用本文所提GFCM算法可以有效地分割含噪声图像. 展开更多
关键词 图像分割 模糊c均值(FcM) Gibbs随机场(GRF) 多级逻辑模型(MLL)
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部