期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:20
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 少数样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
改进MDSMOTE与PSO-SVM在汽车组合仪表分类预测中的应用 被引量:2
2
作者 肖圳 何彦 +3 位作者 李育锋 吴鹏程 刘德高 杜江 《工程设计学报》 CSCD 北大核心 2022年第1期20-27,共8页
汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(sup... 汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(support vector machine,SVM)分类预测方法。首先,结合专家经验对汽车组合仪表的原始生产数据进行特征筛选,并在MDSMOTE中引入类不平衡率IR,以对所筛选的特征数据进行扩充;然后,利用粒子群优化(particle swarm optimization,PSO)算法对SVM的误差惩罚因子C和核函数参数γ进行优化;最后,建立优化的SVM分类预测模型,并对汽车组合仪表进行分类。通过与其他分类预测模型在不同数据集上的预测结果进行对比可知,基于改进MDSMOTE的SVM分类预测模型的准确率、F值和几何平均值等评价指标均优于其他模型。所提出方法在汽车仪表产品分类上表现出较强的泛化能力和稳定性,可为仪表制造企业生产效率的提升提供有效参考。 展开更多
关键词 汽车组合仪表 预测 改进最远点合成少数类过采样技术 支持向量机 粒子群优化
在线阅读 下载PDF
利用采样安全系数的多类不平衡过采样算法 被引量:4
3
作者 董明刚 刘明 敬超 《计算机科学与探索》 CSCD 北大核心 2020年第10期1776-1786,共11页
传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那... 传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那些会造成过度泛化的邻域分配一个较小的权重。然后考虑到样本点的全局特性,采用反向近邻采样安全系数防止新合成的样本点侵入到其他类别区域,减轻类别之间的重叠问题。最后以C4.5决策树作为基分类器,将SSCMIO算法与7种典型的过采样算法进行了对比实验。在16个公开的真实数据集上,SSCMIO算法在准确率、召回率、F-measure、MG、MAUC这5个指标上均能取得11个以上的最优值,在5个指标上最大提升分别是0.4818、0.3053、0.3420、0.2664、0.1307。实验结果表明SSCMIO算法相比其他7种算法可以取得更好的分类性能。 展开更多
关键词 采样安全系数 过采样 合成少数技术 不平衡问题
在线阅读 下载PDF
面向不平衡图像数据的对抗自编码器过采样算法 被引量:2
4
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数过采样技术
在线阅读 下载PDF
改进SMOTE的不平衡数据集成分类算法 被引量:33
5
作者 王忠震 黄勃 +2 位作者 方志军 高永彬 张娟 《计算机应用》 CSCD 北大核心 2019年第9期2591-2596,共6页
针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目... 针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目,对样本集中的噪声样本进行精确识别并予以滤除;其次,在过采样过程中基于聚类的思想将样本集划分为不同的子簇,根据子簇的簇心及其所包含的样本数目,在簇内样本与簇心之间进行新样本的合成操作。在样本合成过程中充分考虑类间和类内数据不平衡性,对样本及时修正以保证合成样本质量,平衡样本信息;最后,利用AdaBoost算法的优势,采用决策树作为基分类器,对平衡后的样本集进行训练,迭代多次直到满足终止条件,得到最终分类模型。选择G-mean、AUC作为评价指标,通过在6组KEEL数据集进行对比实验。实验结果表明,所提的过采样算法与经典的过采样算法SMOTE、自适应综合过采样技术(ADASYN)相比,G-means和AUC在4组中有3组最高;所提分类模型与现有的不平衡分类模型SMOTE-Boost,CUS-Boost,RUS-Boost相比,6组数据中:G-means均高于CUS-Boost和RUS-Boost,有3组低于SMOTE-Boost;AUC均高于SMOTE-Boost和RUS-Boost,有1组低于CUS-Boost。验证了所提的KSMOTE-AdaBoost具有更好的分类效果,且模型泛化性能更高。 展开更多
关键词 不平衡数据分 合成少数过采样技术 K近邻 过采样 ADABOOST算法
在线阅读 下载PDF
基于改进SMOTE的制造过程不平衡数据分类策略 被引量:7
6
作者 黎旭 陈家兑 +1 位作者 吴永明 宗文泽 《计算机工程与应用》 CSCD 北大核心 2022年第16期284-291,共8页
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique... 不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行K-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。 展开更多
关键词 不平衡数据 过采样 局部离群因子 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
针对不平衡数据的过采样和随机森林改进算法 被引量:39
7
作者 张家伟 郭林明 杨晓梅 《计算机工程与应用》 CSCD 北大核心 2020年第11期39-45,共7页
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampl... 针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。 展开更多
关键词 数据不平衡 合成少数过采样技术(SMOTE) Kappa系数 随机森林
在线阅读 下载PDF
面向非平衡多分类问题的二次合成QSMOTE方法 被引量:3
8
作者 韩明鸣 郭虎升 王文剑 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期1-13,共13页
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善... 近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升. 展开更多
关键词 非平衡问题 过泛化 重叠 合成少数采样技术(SMOTE)
在线阅读 下载PDF
针对样本类不平衡的深度残差网络电力系统暂态稳定评估方法 被引量:5
9
作者 刘颂凯 党喜 +3 位作者 崔梓琪 杨超 阮肇华 袁铭洋 《智慧电力》 北大核心 2024年第1期116-123,共8页
系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造... 系统的量测数据可能受到噪声以及样本类分布不平衡问题的影响,导致基于数据驱动的暂态稳定评估模型性能下降。提出一种针对样本类不平衡的的深度残差网络电力系统暂态稳定评估方法。首先,利用改进过采样技术为滤除噪声的少数类样本构造所需的新样本,改善样本类不平衡问题,并减少噪声的影响;然后,基于深度残差网络构建电力系统暂态稳定评估模型,解决梯度消失导致的模型性能退化问题,提高模型的鲁棒性和准确性;最后,在新英格兰10机39节点和47机140节点系统上的仿真结果表明,所提方法能减小噪声干扰、降低不平衡数据集所带来的影响和减少计算复杂度。 展开更多
关键词 暂态稳定评估 噪声问题 样本分布不平衡 改进合成少数过采样技术 深度残差网络
在线阅读 下载PDF
基于改进深度残差收缩网络的心电信号分类算法 被引量:1
10
作者 龚玉晓 高淑萍 《应用数学和力学》 CSCD 北大核心 2023年第8期977-988,共12页
心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过... 心电信号分类是医疗保健领域的重要研究内容.针对大多数方法不能很好地降低样本数量少的类别漏诊率,以及降低预处理操作的复杂性问题,提出了一种基于改进深度残差收缩网络(IDRSN)的心电信号分类算法(即DRSL算法).首先,使用合成少数类过采样技术(SMOTE)扩充数量少的类别样本,从而解决了类不平衡问题;其次,利用改进深度残差收缩网络提取空间特征,其残差模块可以避免网络层加深造成的过拟合,压缩激励和软阈值化子网络可以提取重要局部特征并自动去除噪声;然后,通过长短期记忆网络(LSTM)提取时间特征;最后,利用全连接网络输出分类结果.在MIT-BIH心律失常数据集上的实验结果表明,该算法的分类性能优于IDRSN、DRSN、GAN+2DCNN、CNN+LSTM_ATTENTION、SE-CNN-LSTM分类算法. 展开更多
关键词 心电信号 合成少数过采样技术 深度残差收缩网络 压缩激励 长短期记忆网络
在线阅读 下载PDF
SMOTE类算法研究综述 被引量:13
11
作者 王晓霞 李雷孝 林浩 《计算机科学与探索》 CSCD 北大核心 2024年第5期1135-1159,共25页
合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细... 合成少数类过采样技术(SMOTE)因能有效处理少数类样本已成为处理不平衡数据的主流方法之一,而且许多SMOTE改进算法已被提出,但目前已有的调研极少考虑到流行的算法级改进方法。因此对现有SMOTE类算法进行更全面的分析与总结。首先详细阐述了SMOTE方法的基本原理,然后主要从数据级、算法级两个层面系统性地梳理分析SMOTE类算法,并介绍数据级和算法级混合改进的新思路。数据级改进是在预处理时通过不同操作删除或添加数据来平衡数据分布;算法级改进不会改变数据分布,主要通过修改或创建算法来加强对少数类样本的关注度。二者相比,数据级方法应用受限更少,算法级改进的算法鲁棒性普遍更高。为了更全面地提供SMOTE类算法的基础研究材料,最后列出常用数据集、评价指标,给出未来可能尝试进行的研究思路,以更好地应对不平衡数据问题。 展开更多
关键词 不平衡数据 合成少数过采样技术(SMOTE) 过采样 监督学习
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:6
12
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
面向不平衡数据集的浓香型白酒基酒等级分类研究 被引量:4
13
作者 王继华 李兆飞 +2 位作者 杨壮 赵娜 张贵宇 《中国酿造》 CAS 北大核心 2024年第1期184-189,共6页
为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少... 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型。结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用。 展开更多
关键词 气相色谱-质谱联用 浓香型白酒基酒 合成少数过采样技术 稀疏主成分分析 基酒分
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
14
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
15
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 遗传算子 少数样本合成过采样技术(SMOTE) SYNTHETIC MINORITY OVER-SAMPLING technique (SMOTE)
在线阅读 下载PDF
基于主动学习SMOTE的非均衡数据分类 被引量:23
16
作者 张永 李卓然 刘小丹 《计算机应用与软件》 CSCD 北大核心 2012年第3期91-93,162,共4页
少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALS... 少数类样本合成过采样技术(SMOTE)是一种典型的过采样数据预处理方法,它能够有效平衡非均衡数据,但会带来噪音等问题,影响分类精度。为解决此问题,借助主动学习支持向量机的分类性能,提出一种基于主动学习SMOTE的非均衡数据分类方法 ALSMOTE。由于主动学习支持向量机采用基于距离的主动选择最佳样本的学习策略,因此能够主动选择非均衡数据中的有价值的多数类样本,舍弃价值较小的样本,从而提高运算效率,改进SMOTE带来的问题。首先运用SMOTE方法均衡小部分样本,得到初始分类器;然后利用主动学习策略调整分类器精度。实验结果表明,该方法有效提高了非均衡数据的分类准确率。 展开更多
关键词 主动学习 不平衡数据集 少数样本合成过采样技术 支持向量机
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:11
17
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(SMOTE) 构造性覆盖算法(CCA)
在线阅读 下载PDF
基于SMOTE算法和条件生成对抗网络的到港航班延误分类预测 被引量:7
18
作者 刘博 卢婷婷 +1 位作者 张兆宁 张健斌 《科学技术与工程》 北大核心 2021年第34期14843-14852,共10页
由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(condi... 由于航班延误数据集类别分布不均,传统分类器的性能受到一定程度的制约。为了能够对到港航班延误情况进行精准预测,提出了一种基于合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)算法和条件生成对抗网络(conditional generative adversarial nets,CGAN)的航班延误预测模型。首先,利用SMOTE算法对原始数据集进行上采样,并融合经过训练的CGAN生成指定样本数据集,缓解原始数据集中某些类别样本量少和数据非平衡等问题;再次,采用XGBoost模型在4种模式训练集上进行训练和超参数寻优;最后,以K近邻、支持向量机和随机森林为基准模型进行性能对比分析。经试验分析,通过分类器在融合样本集的训练,整体上可以在一定程度上提高模型的泛化性,尤其在轻度延误和中度延误类别中提升较为明显,与不采用融合方法比较,宏平均下的Precision、Recall、F_(1)-score值分别提升了0.16、0.29、0.24个百分点。实验结果表明,该方法能够有效地对航班延误非平衡数据进行建模,在保持模型整体性能较高的前提下,能够显著地提升少数类的预测能力,可以为空管、航空公司和机场等提供决策依据。 展开更多
关键词 航班延误 非平衡数据集 合成少数过采样技术(SMOTE)算法 条件生成对抗网络 XGBoost模型 问题
在线阅读 下载PDF
基于改进深度降噪自编码网络的电网气象防灾方法 被引量:18
19
作者 丛伟 胡亮亮 +3 位作者 孙世军 韩洪 孙梦晨 王安宁 《电力系统自动化》 EI CSCD 北大核心 2019年第2期42-49,共8页
电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降... 电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降噪自编码(SDAE)网络的电网气象防灾方法。以气象历史数据和电网运维检修数据为基础,利用合成少数类样本过采样技术(SMOTE)降低原始数据集的不平衡度,自编码网络通过非监督自学习和有监督微调完成气象信息特征的提取和气象信息与电网故障映射关系的建立,并通过融入稀疏项限制和加噪编码来改善网络的鲁棒性。算例分析表明,所提出的基于SMOTE和SDAE的网络电网气象防灾方法,能够准确、全面地建立气象信息与电网故障之间的关联映射关系,能够对给定的气象条件是否会导致发生电网灾害事故进行准确的预判。 展开更多
关键词 气象信息 电网防灾减灾 电网故障 合成少数样本过采样技术 深度降噪自编码 深度学习
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
20
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部