期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于改进拉普拉斯能量和的快速图像融合 被引量:19
1
作者 孙晓龙 王正勇 +2 位作者 符耀庆 易云 何小海 《计算机工程与应用》 CSCD 北大核心 2015年第5期193-197,共5页
为了得到优质的融合图像,提出了一种改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)多聚焦图像融合算法。该算法在传统SML计算每个像素点的变步长拉普拉斯算子值仅有的水平和垂直方向的基础上,增加了斜对角线上的四个方向... 为了得到优质的融合图像,提出了一种改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)多聚焦图像融合算法。该算法在传统SML计算每个像素点的变步长拉普拉斯算子值仅有的水平和垂直方向的基础上,增加了斜对角线上的四个方向。同时通过分析NSML算法的计算过程,发现存在大量的重复计算,从而提出了基于积分图像的快速NSML图像融合方法。该方法通过简化NSML的计算过程,大大减少了图像融合处理过程消耗的时间,提高了图像融合的效率。实验结果表明,快速NSML方法在达到极佳融合图像质量的同时,提升了算法的实时性。 展开更多
关键词 图像融合 改进拉普拉斯能量 空间域 一致性校验 积分图像
在线阅读 下载PDF
一种适用于多模态医学图像融合的自适应脉冲耦合神经网络改进算法 被引量:9
2
作者 于淼 宁春玉 +1 位作者 石乐民 吕冰垚 《科学技术与工程》 北大核心 2020年第22期9116-9121,共6页
针对医学图像融合存在伪影、边缘保持性弱等问题,提出了一种参数自适应的脉冲耦合神经网络(pulse coupled neural network,PCNN)图像融合方法。首先,对源图像通过非下采样Contourlet变换(non-subsampled contourlet transform,NSCT)得... 针对医学图像融合存在伪影、边缘保持性弱等问题,提出了一种参数自适应的脉冲耦合神经网络(pulse coupled neural network,PCNN)图像融合方法。首先,对源图像通过非下采样Contourlet变换(non-subsampled contourlet transform,NSCT)得到一个低通子带和多个尺度多个方向下的带通子带。然后用区域标准差调整连接范围,进而调整突触权重矩阵以及加权系数;用各子带的改进空间频率中方向特征最显著的分量调整连接强度;对于外部激励,低通子带用区域能量和区域方差的线性组合计算,带通方向子带采用改进的拉普拉斯能量和计算。点火映射图的判决遵循取大原则。最后,通过NSCT逆变换得到融合结果图。实验结果表明,此算法能更多地保留源图像的信息,边缘保持能力更强,融合图像对比度高,视觉效果更佳,适用于多种模态医学图像之间的融合。 展开更多
关键词 图像处理 医学图像融合 自适应脉冲耦合神经网络 改进空间频率 区域特征 改进拉普拉斯能量
在线阅读 下载PDF
基于改进Contourlet变换的遥感图像融合算法 被引量:6
3
作者 陈利霞 邹宁 +1 位作者 袁华 欧阳宁 《计算机应用》 CSCD 北大核心 2015年第7期2015-2019,2038,共6页
针对基于Contourlet变换的遥感融合图像空间分辨率较低的问题,提出了一种基于改进的Contourlet变换(MCT)的遥感图像融合方法。首先,对多光谱图像进行亮度-色调-饱和度(IHS)变换,得到其亮度、色调、饱和度三个分量;其次,取多光谱图像的... 针对基于Contourlet变换的遥感融合图像空间分辨率较低的问题,提出了一种基于改进的Contourlet变换(MCT)的遥感图像融合方法。首先,对多光谱图像进行亮度-色调-饱和度(IHS)变换,得到其亮度、色调、饱和度三个分量;其次,取多光谱图像的亮度分量,与直方图匹配后的全色图像进行改进的Contourlet变换,分别获得低频子带系数与高频子带系数;然后,对低频子带系数采用平均法进行融合,对高频子带系数采用新改进的拉普拉斯能量和(NSML)作为融合规则进行融合;最后,把融合结果作为多光谱图像的亮度分量,通过IHS逆变换得到融合的遥感图像。将所提方法与基于主成分分析(PCA)和Shearlet的方法、基于PCA与小波的方法以及基于非下采样Contourlet变换(NSCT)的方法相比,所提方法在清晰度评价指标平均梯度上分别提高了7.3%、6.9%和3.9%。实验结果表明,所提方法提高了Contourlet变换的频率局部化特性和分解系数利用率,在保持多光谱信息的基础上,有效地提高了遥感融合图像的空间分辨率。 展开更多
关键词 图像融合 遥感图像 伪吉布斯现象 轮廓波变换 改进拉普拉斯能量
在线阅读 下载PDF
改进交叉视觉皮质模型的医学图像融合方法 被引量:1
4
作者 戴文战 胡伟生 《计算机应用研究》 CSCD 北大核心 2016年第9期2852-2855,2861,共5页
传统的交叉视觉皮质层模型(intersecting cortical model,ICM)在图像边缘检测和图像的分割等领域得到了广泛的应用,但模型中的一些参数需要人工去选取,从而降低了模型应用结果的准确度。为了使ICM中的参数能够自适应选取,对传统的ICM进... 传统的交叉视觉皮质层模型(intersecting cortical model,ICM)在图像边缘检测和图像的分割等领域得到了广泛的应用,但模型中的一些参数需要人工去选取,从而降低了模型应用结果的准确度。为了使ICM中的参数能够自适应选取,对传统的ICM进行改进,提出改进的ICM与非下采样Contourlet变换(non-subsampled Contourlet transform,NSCT)相结合的方法应用于医学图像的融合。实验结果表明,该算法无论从主观性评价还是从六个客观性评价指标均优于其他融合算法,不仅提高了图像的清晰度,而且较大程度地保留了图像的细节信息,具有边缘信息突出、亮度对比度高的优点,取得了满意的效果。 展开更多
关键词 医学图像融合 非下采样CONTOURLET变换 脉冲耦合神经网络 改进拉普拉斯能量 交叉视觉皮质层模型
在线阅读 下载PDF
基于MDLatLRR的CT和MRI图像融合增强方法
5
作者 靳梦姣 王远军 《上海理工大学学报》 CAS CSCD 北大核心 2024年第5期545-555,共11页
以往所提出的医学图像融合算法均对源图像提取相同分解层次的特征,忽略了源图像的特有特征。针对这一问题,提出一种根据不同模态医学图像提取其特有特征的融合方法。首先,使用改进的多级潜在低秩表示分解方法,在提取CT和MRI基础信息和... 以往所提出的医学图像融合算法均对源图像提取相同分解层次的特征,忽略了源图像的特有特征。针对这一问题,提出一种根据不同模态医学图像提取其特有特征的融合方法。首先,使用改进的多级潜在低秩表示分解方法,在提取CT和MRI基础信息和细节信息的基础上,根据成像特点的不同,进一步提取CT图像的骨骼轮廓信息和MRI图像的软组织细节信息。然后,提出一种局部信息熵加权的区域能量函数方法融合细节信息,利用结构显著性度量和改进拉普拉斯能量和方法共同融合基础信息。最后,提出图像引导增强算法,以特有特征为引导对融合后的基础层和细节层进行增强。经实验证明,相比近几年具有代表性的融合方法,所提出的方法不仅在AG,EPI,VIF,SD客观评价指标中分别平均提高了9.45%,11.75%,14.79%,10.51%,而且在主观评价中也取得更好的效果,实现了CT和MRI图像精准融合。 展开更多
关键词 图像融合 多级潜在低秩表示分解 图像增强 改进拉普拉斯能量
在线阅读 下载PDF
基于NSCT与区域点火PCNN的医学图像融合方法 被引量:9
6
作者 杨艳春 王晓明 +1 位作者 党建武 王阳萍 《系统仿真学报》 CAS CSCD 北大核心 2014年第2期274-278,共5页
为了进一步改善医学图像融合质量,提出一种基于NSCT(非下采样Contourlet变换)与区域点火PCNN(脉冲耦合神经网络)的医学图像融合方法。该方法在低频子带系数采用基于区域点火PCNN的融合规则,应用PCNN改进的简化模型,将低频子带系数作为... 为了进一步改善医学图像融合质量,提出一种基于NSCT(非下采样Contourlet变换)与区域点火PCNN(脉冲耦合神经网络)的医学图像融合方法。该方法在低频子带系数采用基于区域点火PCNN的融合规则,应用PCNN改进的简化模型,将低频子带系数作为信号激励PCNN网络,利用点火区域强度分析区域点火特性,根据区域点火特性确定低频子带融合系数;在选择带通方向子带系数时,充分利用非下采样Contourlet变换的方向特性,采用改进的拉普拉斯能量作为带通方向子带系数的融合规则。实验结果表明,该方法与传统融合方法相比,能够较好的保留图像的边缘和过渡区域信息,大幅度提高融合图像的质量。 展开更多
关键词 非下采样CONTOURLET变换 脉冲耦合神经网络 点火区域强度 改进拉普拉斯能量 医学图像融合 nonsubsampled CONTOURLET transform (NSCT) pulse coupled neural network (PCNN)
在线阅读 下载PDF
NSCT域内基于自适应PCNN的图像融合新方法 被引量:10
7
作者 荣传振 贾永兴 +2 位作者 杨宇 朱莹 王渊 《信号处理》 CSCD 北大核心 2017年第3期280-287,共8页
论文结合非下采样contourlet变换(NSCT)的平移不变性、多尺度、多方向特性和脉冲耦合神经网络(PCNN)的同步脉冲发放、捕获特性,提出在NSCT域中基于PCNN的图像融合框架。对于低频子带,利用改进拉普拉斯能量和作为特征激励PCNN;对于高频... 论文结合非下采样contourlet变换(NSCT)的平移不变性、多尺度、多方向特性和脉冲耦合神经网络(PCNN)的同步脉冲发放、捕获特性,提出在NSCT域中基于PCNN的图像融合框架。对于低频子带,利用改进拉普拉斯能量和作为特征激励PCNN;对于高频方向子带,采用改进的空间频率作为PCNN的外部激励;同时利用各子带图像的平均梯度自适应调节PCNN的链接强度,最后,选取具有较大点火次数的系数作为融合图像的系数,经逆NSCT变换重构融合图像。实验结果表明本文方法无论在主观视觉还是客观评价标准上都要优于传统的基于小波变换、contourlet变换、PCNN的图像融合方法。 展开更多
关键词 图像融合 脉冲耦合神经网络 非下采样CONTOURLET变换 改进拉普拉斯能量 改进的空间频率
在线阅读 下载PDF
稀疏表示和非下采样Shearlet变换相结合的多聚焦图像融合 被引量:9
8
作者 杨勇 万伟国 +1 位作者 黄淑英 姚丽 《小型微型计算机系统》 CSCD 北大核心 2017年第2期386-392,共7页
针对多聚焦图像融合过程中源图像未精确配准带来的伪吉布斯现象,提出一种稀疏表示和非下采样Shearlet变换相结合的图像融合方法.该方法首先利用非下采样Shearlet变换对源图像进行多尺度分解,低频系数采用稀疏表示进行融合,为了提高算法... 针对多聚焦图像融合过程中源图像未精确配准带来的伪吉布斯现象,提出一种稀疏表示和非下采样Shearlet变换相结合的图像融合方法.该方法首先利用非下采样Shearlet变换对源图像进行多尺度分解,低频系数采用稀疏表示进行融合,为了提高算法效率和更好地逼近低频系数,将初始融合的低频子图直接作为训练样本自适应构造过完备字典,高频系数采用改进拉普拉斯能量和取大的融合规则,然后重构低高频融合系数得到最终的融合图像.通过和多种融合方法进行对比实验,本文方法融合结果无论从主观视觉还是客观评价上都能得到很好的效果. 展开更多
关键词 多聚焦图像融合 非下采样Shearlet变换 稀疏表示 改进拉普拉斯能量
在线阅读 下载PDF
基于非下采样Contourlet变换的医学图像融合方法 被引量:8
9
作者 杨艳春 王晓明 +1 位作者 党建武 王阳萍 《计算机科学》 CSCD 北大核心 2013年第3期310-312,F0003,共4页
针对传统多尺度变换的医学图像融合问题,提出一种基于非下采样Contourlet变换的医学图像融合新方法。在低频子带系数的选取上,根据医学图像的特点,考虑到相邻低频子带系数之间存在的相关性,采用基于区域能量的融合规则;在选择带通方向... 针对传统多尺度变换的医学图像融合问题,提出一种基于非下采样Contourlet变换的医学图像融合新方法。在低频子带系数的选取上,根据医学图像的特点,考虑到相邻低频子带系数之间存在的相关性,采用基于区域能量的融合规则;在选择带通方向子带系数时,充分利用非下采样Contourlet变换的方向特性,采用改进拉普拉斯能量和作为带通方向子带系数的融合规则。实验结果表明,与传统融合方法相比,该方法避免了图像失真,达到了良好的图像融合效果。 展开更多
关键词 非下采样CONTOURLET变换 医学图像融合 区域能量 改进拉普拉斯能量
在线阅读 下载PDF
基于插值与剪切波融合的图像超分辨率重建 被引量:9
10
作者 殷明 水珺 +1 位作者 栾静 白瑞峰 《计算机工程》 CAS CSCD 北大核心 2015年第5期274-279,共6页
针对单幅图像超分辨率重建问题,提出一种基于软判决自适应(SAI)-双三次(Bicubic)插值与平移不变剪切波融合的超分辨率重建算法。对源图像分别进行SAI插值和Bicubic插值,采用平移不变剪切波变换对2幅插值图像进行多尺度、多方向分解,得... 针对单幅图像超分辨率重建问题,提出一种基于软判决自适应(SAI)-双三次(Bicubic)插值与平移不变剪切波融合的超分辨率重建算法。对源图像分别进行SAI插值和Bicubic插值,采用平移不变剪切波变换对2幅插值图像进行多尺度、多方向分解,得到低频及高频子带,对于低频子带,根据区域系数方差确定模糊相似度,结合改进的S函数确定自适应加权融合规则,对于高频子带,采用新改进拉普拉斯能量和与加权平均相结合的融合规则进行处理,将得到的融合系数进行剪切波逆变换,从而得到高分辨率重建图像。实验结果表明,与原有的SAI插值算法相比,该算法能提升重建图像的清晰度及峰值信噪比。 展开更多
关键词 超分辨率重建 软判决自适应插值 图像融合 平移不变性剪切波变换 S函数 改进拉普拉斯能量
在线阅读 下载PDF
基于非下采样Shearlet和WNMF的红外热波图像融合 被引量:8
11
作者 吴一全 殷骏 曹照清 《光子学报》 EI CAS CSCD 北大核心 2014年第10期108-116,共9页
提出了基于非下采样Shearlet变换和加权非负矩阵分解的红外热波图像融合方法.红外热波序列图像经非下采样Shearlet变换后,采用动态加权非负矩阵分解算法对低频系数进行融合处理.该算法的加权系数依据图像像素突变度动态调整,以突出红外... 提出了基于非下采样Shearlet变换和加权非负矩阵分解的红外热波图像融合方法.红外热波序列图像经非下采样Shearlet变换后,采用动态加权非负矩阵分解算法对低频系数进行融合处理.该算法的加权系数依据图像像素突变度动态调整,以突出红外热波图像的缺陷区域;高频系数则采取基于区域改进拉普拉斯能量和的融合策略,以保持缺陷的边缘细节.实验结果表明,本文方法在主观视觉效果及边缘保持度、相关度、运行时间三种客观定量评价指标中,融合性能更优,具有快速、有效等优点,能更完整和清晰地保持红外热波图像的边缘轮廓.该方法可有效地应用于多幅红外热波序列图像的融合中,在红外热波无损检测领域具有较高的实用价值. 展开更多
关键词 无损检测 红外热波 图像融合 非下采样Shearlet变换 加权非负矩阵分解 改进拉普拉斯能量
在线阅读 下载PDF
利用邻域激励的自适应PCNN进行医学图像融合 被引量:4
12
作者 夏加星 段先华 魏世超 《计算机应用研究》 CSCD 北大核心 2011年第10期3929-3933,共5页
对于不同模态的医学图像进行融合处理,可为临床提供新的诊断信息,设计了一种邻域空间频域激励的自适应PCNN医学图像融合新方法。首先,使用图像逐像素地改进拉普拉斯能量和(SML)清晰度作为PCNN对应神经元的链接强度;同时利用邻域空间频域... 对于不同模态的医学图像进行融合处理,可为临床提供新的诊断信息,设计了一种邻域空间频域激励的自适应PCNN医学图像融合新方法。首先,使用图像逐像素地改进拉普拉斯能量和(SML)清晰度作为PCNN对应神经元的链接强度;同时利用邻域空间频域(SF)特征信息激励每个神经元;然后,将源图像输入PCNN获得点火映射图构成的点火频数,再判定并选择各参与融合图像中的清晰部分生成融合图像。实验结果表明,该算法具有比经典金字塔方法、小波变换方法和传统的PCNN方法更好的融合性能。 展开更多
关键词 医学图像融合 脉冲耦合神经网络 链接强度 改进拉普拉斯能量 空间频域
在线阅读 下载PDF
一种NSCT域多聚焦图像融合新方法 被引量:2
13
作者 杨勇 童松 +2 位作者 黄淑英 方志军 杨寿渊 《图学学报》 CSCD 北大核心 2014年第6期854-863,共10页
针对多聚焦图像融合存在的问题,提出一种基于非下采样Contourlet变换(NSCT)的多聚焦图像融合新方法。首先,采用NSCT对多聚焦图像进行分解;然后,对低频系数采用基于改进拉普拉斯能量和(SML)的视觉特征对比度进行融合,对高频系数采用基于... 针对多聚焦图像融合存在的问题,提出一种基于非下采样Contourlet变换(NSCT)的多聚焦图像融合新方法。首先,采用NSCT对多聚焦图像进行分解;然后,对低频系数采用基于改进拉普拉斯能量和(SML)的视觉特征对比度进行融合,对高频系数采用基于二维Log-Gabor能量进行融合;最后,对得到的融合系数进行重构得到融合图像。实验结果表明,无论是运用视觉的主观评价,还是基于互信息、边缘信息保留值等客观评价标准,该文所提方法都优于传统的离散小波变换、平移不变离散小波变换、NSCT等融合方法。 展开更多
关键词 多聚焦图像融合 非下采样CONTOURLET变换 Log-Gabor能量 改进拉普拉斯能量
在线阅读 下载PDF
自适应PCNN的形态小波多聚焦图像融合方法 被引量:5
14
作者 何刘杰 胡涛 任仙怡 《计算机工程与应用》 CSCD 2013年第12期132-135,159,共5页
为了解决传统形态小波图像融合方法在重构尺度信号时发生了位置错误和重构细节信号时发生了灰度值下溢的不足,提出一种有效的基于自适应脉冲耦合神经网络(PCNN)的形态小波多聚焦图像融合方法。通过形态小波对已配准的源图像进行分解;提... 为了解决传统形态小波图像融合方法在重构尺度信号时发生了位置错误和重构细节信号时发生了灰度值下溢的不足,提出一种有效的基于自适应脉冲耦合神经网络(PCNN)的形态小波多聚焦图像融合方法。通过形态小波对已配准的源图像进行分解;提出一种自适应的PCNN,用分解系数的改进拉普拉斯能量和(SML)作为PCNN对应神经元的反馈输入,用图像的清晰度作为对应神经元的连接强度,经过PCNN点火获得参与融合系数的点火映射图,通过判决选择算子指导系数的融合;经过形态小波逆变换得到融合图像。实验结果表明,该算法的融合图像具有良好的视觉效果及较高客观评价指标。 展开更多
关键词 多聚焦图像融合 形态小波 脉冲耦合神经网络 改进拉普拉斯能量 清晰度
在线阅读 下载PDF
提升静态小波特征对比度多聚焦图像融合算法 被引量:3
15
作者 董红霞 易正俊 叶晓斌 《计算机应用研究》 CSCD 北大核心 2012年第2期757-760,共4页
针对多聚焦图像融合问题,提出了一种新的基于提升静态小波变换(lifting stationary wavelet transform,LSWT)的特征对比度图像融合方法。该方法对图像经LSWT分解得到的不同子带系数采用不同的融合方案。在选择低频子带系数时提出了一种... 针对多聚焦图像融合问题,提出了一种新的基于提升静态小波变换(lifting stationary wavelet transform,LSWT)的特征对比度图像融合方法。该方法对图像经LSWT分解得到的不同子带系数采用不同的融合方案。在选择低频子带系数时提出了一种基于改进拉普拉斯能量和的视觉特性对比度系数选择方案;而在选择融合图像的高频子带系数时,根据人眼视觉对图像局部对比度变换非常敏感的特性,提出了局部特征对比度的概念,设计了一种基于局部特征对比度的系数选择方案。实验证明,该算法相对于传统图像融合方法,能得到视觉效果更好、量化指标更优的融合图像。 展开更多
关键词 图像融合 提升静态小波变换 特征对比度 改进拉普拉斯能量
在线阅读 下载PDF
结合SML与差分图像的多聚焦图像融合算法 被引量:3
16
作者 廖丽娜 李伟彤 项颖 《液晶与显示》 CAS CSCD 北大核心 2023年第4期524-533,共10页
针对传统多聚焦图像融合算法中融合边缘出现模糊、伪影等问题,提出了一种结合改进拉普拉斯能量和(SML)与差分图像的多聚焦图像融合算法。首先,为了提取源图像的聚焦特征信息,分别通过SML和滤波差分进行聚焦度量,再采用引导滤波获得更多... 针对传统多聚焦图像融合算法中融合边缘出现模糊、伪影等问题,提出了一种结合改进拉普拉斯能量和(SML)与差分图像的多聚焦图像融合算法。首先,为了提取源图像的聚焦特征信息,分别通过SML和滤波差分进行聚焦度量,再采用引导滤波获得更多的细节特征;接着,利用像素最大值规则生成初始融合决策图,再对初始融合决策图进行小区域去除消除因聚焦和散焦区域相似造成的噪点,并对融合决策图进行不一致处理,获得更精确的聚焦区域;最后,由逐像素加权平均规则,得到融合图像。实验结果表明,所提出的算法在主观视觉效果和客观评价指标上均优于对比算法,互信息、特征互信息、图像梯度特征在彩色图像上分别提高了0.17%、0.38%和0.11%,在灰度图像上分别提高了0.7%、0.69%和0.33%,并且平均运行时间少于0.5 s,具有较高的计算效率。此外,该算法能够较好地保留源图像信息的完整性,融合图像边缘清晰、无伪影。 展开更多
关键词 多聚焦图像融合 改进拉普拉斯能量 差分图像 聚焦区域检测
在线阅读 下载PDF
基于非下采样Contourlet变换的自适应医学图像融合算法 被引量:3
17
作者 楼建强 戴文战 李俊峰 《应用科学学报》 CSCD 北大核心 2017年第6期763-774,共12页
提出一种多模态医学图像融合算法.用非下采样contourlet变换(non-subsampled contourlet transform,NSCT)将已配准的源图像进行分解,得到低频子带和多层高频子带,然后在各子带中将NSCT系数进行融合.对于低频子带,根据其特性制定规则融... 提出一种多模态医学图像融合算法.用非下采样contourlet变换(non-subsampled contourlet transform,NSCT)将已配准的源图像进行分解,得到低频子带和多层高频子带,然后在各子带中将NSCT系数进行融合.对于低频子带,根据其特性制定规则融合区域能量、互信息、信息熵;对于高频子带,则依据改进的拉普拉斯能量和融合规则,用遗传算法自动优化其待定参数.将融合后的高、低频子带进行NSCT逆变换即可得到融合图像.对灰度和彩色医学图像进行的实验表明,与其他方法相比,用该算法得到的融合图像包含更丰富的纹理信息,视觉效果较好. 展开更多
关键词 医学图像融合 非下采样变换 区域能量 改进拉普拉斯能量
在线阅读 下载PDF
结合NSDTCT和稀疏表示的遥感图像融合 被引量:19
18
作者 殷明 庞纪勇 +1 位作者 魏远远 段普宏 《光子学报》 EI CAS CSCD 北大核心 2016年第1期10-17,共8页
为了提高全色图像与多光谱图像的融合质量,提出一种基于非下采样双树复轮廓波变换和稀疏表示的图像融合算法.对多光谱图像进行亮度-色度-饱和度变换,再对亮度分量和全色图像进行直方图匹配及亮度平滑滤波处理.利用非下采样双树复轮廓波... 为了提高全色图像与多光谱图像的融合质量,提出一种基于非下采样双树复轮廓波变换和稀疏表示的图像融合算法.对多光谱图像进行亮度-色度-饱和度变换,再对亮度分量和全色图像进行直方图匹配及亮度平滑滤波处理.利用非下采样双树复轮廓波变换处理亮度分量和全色图像,得到对应的高低频系数.对于低频系数,利用稀疏表示进行融合,采用空间频率和l1范数双指标取大的融合规则得到稀疏表示系数;对于高频系数,将改进的拉普拉斯能量和作为脉冲耦合神经网络的外部输入项,提出了改进的脉冲耦合神经网络的融合策略.最后进行非下采样双树复轮廓波逆变换和亮度-色度-饱和度逆变换得到融合结果.实验结果表明,该算法最大限度地保留光谱信息的同时可以提高空间分辨率,视觉效果及客观指标均优于经典的融合算法. 展开更多
关键词 图像处理 遥感图像融合 非下采样双树复轮廓波变换 稀疏表示 脉冲耦合神经网络 改进拉普拉斯能量
在线阅读 下载PDF
基于复合激励模型的Surfacelet域多聚焦图像融合方法 被引量:4
19
作者 张宝华 吕晓琪 张传亭 《光电工程》 CAS CSCD 北大核心 2013年第5期88-96,共9页
针对基于传统多尺度分析对图像分解得到的方向子带数量较少,抑制噪声能力弱,融合图像边缘连贯性不好的缺点,本文提出一种基于Surfacelet变换和复合激励模型的多聚焦图像融合方法。通过分别将两幅图像经Surfacelet变换后得到若干不同频... 针对基于传统多尺度分析对图像分解得到的方向子带数量较少,抑制噪声能力弱,融合图像边缘连贯性不好的缺点,本文提出一种基于Surfacelet变换和复合激励模型的多聚焦图像融合方法。通过分别将两幅图像经Surfacelet变换后得到若干不同频带子图像,该方法根据低频子带和高频子带的特点,建立复合激励模型,即分别把改进的拉普拉斯能量和与空间频率作为复合型PCNN的外部激励,采用复合型PCNN优选融合系数,改善融合效果。获取的融合图像的灰度级分布更加分散,图像纹理连贯,细节突出。实验结果表明,该算法克服传统多聚焦图像融合方法的缺陷,客观评价指标显示本方法优于Laplace、DWT和PCA等传统图像融合方法。 展开更多
关键词 复合激励 Surfacelet 改进拉普拉斯能量 空间频率 多聚焦图像融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部