无人机路径规划源于机器人运动规划,是当下无人机应用研究的核心内容,对提高无人机系统在复杂环境中的作业能力起着关键作用。针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法进行无人机路径规划时搜索随机性高、存在冗余...无人机路径规划源于机器人运动规划,是当下无人机应用研究的核心内容,对提高无人机系统在复杂环境中的作业能力起着关键作用。针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法进行无人机路径规划时搜索随机性高、存在冗余路径和路径平滑性差的问题,提出了一种面向无人机路径规划的改进RRT算法。改进RRT算法在RRT算法的基础上结合人工势场法中的引力函数使得随机节点的产生具有目标导向性,限制了随机树的拓展方向,从而降低了搜索的随机性;结合贪心算法对规划所得路径进行剪枝优化,去除冗余节点,缩短了路径长度;结合B样条曲线对路径进行平滑性处理,去除曲率突变的转折点,形成一条平滑的适合无人机实际飞行的路径。通过仿真软件对A^(*)算法、传统RRT算法与改进RRT算法进行对比分析,仿真结果表明,提出的改进RRT算法性能更高,在狭窄通道场景与复杂障碍物场景下相比于传统RRT算法平均规划时间各减少49.44%和17.97%,相比于A^(*)算法平均规划时间各减少了80.23%和52.93%,得到的路径更短更为平缓,同时大幅降低了RRT算法路径规划失败的可能性,验证了改进RRT算法的可行性与有效性,解决了原算法随机性高、存在冗余路径和平滑性差的问题。展开更多
面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在...面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。展开更多
文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面...文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面,利用RRT算法进行粗粒度的路径分支决策,并将已选分支的边缘信号反馈给局部路径的计算.通过RRT^(*)的重剪枝功能,能够在局部进行路径优化,而避免将其用于整体路径优化时可能带来的“选择震荡”风险.仿真实验与真实环境结果表明:将RRT*与RRT在局部和全局两种尺度上的区分使用,相较只使用RRT算法路径长度减少了16.4%.展开更多
针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势...针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。展开更多
文摘无人机路径规划源于机器人运动规划,是当下无人机应用研究的核心内容,对提高无人机系统在复杂环境中的作业能力起着关键作用。针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法进行无人机路径规划时搜索随机性高、存在冗余路径和路径平滑性差的问题,提出了一种面向无人机路径规划的改进RRT算法。改进RRT算法在RRT算法的基础上结合人工势场法中的引力函数使得随机节点的产生具有目标导向性,限制了随机树的拓展方向,从而降低了搜索的随机性;结合贪心算法对规划所得路径进行剪枝优化,去除冗余节点,缩短了路径长度;结合B样条曲线对路径进行平滑性处理,去除曲率突变的转折点,形成一条平滑的适合无人机实际飞行的路径。通过仿真软件对A^(*)算法、传统RRT算法与改进RRT算法进行对比分析,仿真结果表明,提出的改进RRT算法性能更高,在狭窄通道场景与复杂障碍物场景下相比于传统RRT算法平均规划时间各减少49.44%和17.97%,相比于A^(*)算法平均规划时间各减少了80.23%和52.93%,得到的路径更短更为平缓,同时大幅降低了RRT算法路径规划失败的可能性,验证了改进RRT算法的可行性与有效性,解决了原算法随机性高、存在冗余路径和平滑性差的问题。
文摘面对采摘作业的复杂环境,提出了一种终点区域RRT(Goal Area RRT,GA-RRT)算法,以提高路径生成的效率并降低路径成本。根据环境系数确定初始步长与终点区域,当拓展节点进入终点区域后,随机点生成范围缩小至终点区域,同时调整步长;然后,在此基础上引入目标概率偏向方法,提高路径搜索效率;最后,对生成的路径进行简化节点处理以减少路径代价,并使用三次B样条方法平滑路径。仿真实验结果表明:二维环境下,GA-RRT算法相较于RRT、RRT-Connect算法,耗时缩短85.15%、29.86%,路径代价减少19.18%、18.26%;机械臂仿真环境下,与引入目标概率偏向方法的RRT算法进行比较,耗时缩短54.70%,路径代价减少51.59°。利用IRB120机械臂实验平台,验证了算法的可行性。
文摘文中提出了一种混合RRT(rapid-exploration random tree)搜索算法.算法整体上按照全局路径和局部路径的最优试探开展同步计算.在局部路径计算层面,利用RRT^(*)算法基于周边探测数据,结合前沿点信息进行小尺度路径搜索、全局路径计算层面,利用RRT算法进行粗粒度的路径分支决策,并将已选分支的边缘信号反馈给局部路径的计算.通过RRT^(*)的重剪枝功能,能够在局部进行路径优化,而避免将其用于整体路径优化时可能带来的“选择震荡”风险.仿真实验与真实环境结果表明:将RRT*与RRT在局部和全局两种尺度上的区分使用,相较只使用RRT算法路径长度减少了16.4%.
文摘针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。