在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方...在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。展开更多
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalma...为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。展开更多
为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第...为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。展开更多
文摘为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。