期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于IIVY-SVMD-MPE-SVM的开关柜局部放电故障识别
1
作者 解骞 郑胜瑜 +3 位作者 刘兴华 李辉 党建 解佗 《实验技术与管理》 北大核心 2025年第4期26-36,共11页
针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(su... 针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(support vector machine,SVM)的模式识别算法,实现了局部放电类型的故障识别。首先,融合空间金字塔匹配混沌映射、自适应t分布与动态自适应权三种策略提出IIVY算法;其次,对局部放电原始超声波信号进行SVMD并提取多尺度排列熵(multivariate permutation entropy,MPE),建立基于IIVY-SVMD-MPE的局部放电特征提取策略,利用IIVY算法自适应地选取SVMD惩罚因子α,结合相关系数筛选出最大的三个本征模态函数(intrinsic mode function,IMF)分量提取MPE,构建多维融合特征数据集;再次,提出并建立基于IIVY-SVM的开关柜局部放电故障识别模型,利用IIVY对SVM中惩罚参数C及核参σ进行自适应寻优;最后,通过对比验证表明所建立模型综合识别率更高、在不同评价指标上表现更佳,综合识别准确率达到98.8%,有效提高了故障识别的准确性与可靠性。 展开更多
关键词 超声波 改进常青藤算法 连续变分模态分解 多尺度排列熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部