期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于高斯模糊信息粒化和改进小波神经网络的短期负荷区间预测研究 被引量:5
1
作者 余鹏 唐权 +1 位作者 张文涛 黄民翔 《机电工程》 CAS 2017年第2期167-172,共6页
针对现有短期负荷预测方法适应性不足、预测精度不高,WNN原始连接权值和阈值采取随机赋值并采用梯度学习算法进行修正,存在进化缓慢、易出现陷入局部极小或不收敛等问题,提出了基于高斯FIG和改进WNN的短期负荷区间预测新方法。用收敛速... 针对现有短期负荷预测方法适应性不足、预测精度不高,WNN原始连接权值和阈值采取随机赋值并采用梯度学习算法进行修正,存在进化缓慢、易出现陷入局部极小或不收敛等问题,提出了基于高斯FIG和改进WNN的短期负荷区间预测新方法。用收敛速度更快的函数取代常用的输出层神经元函数,并用粒子群算法寻优取代WNN连接权值和阈值随机赋值。把网络连接权值和阈值作为粒子群算法微粒的位置向量,不断调整微粒的速度和位置向量以寻求最优值。选择了合适的数据跨度作为一个粒化窗口,对原始负荷数据进行了高斯模糊粒化处理,得到了对应的高斯FIG后的序列值,并用改进后的WNN对模糊序列值进行了区间预测。与WNN及SVM方法的对比研究结果表明,该方法不仅能够获得比单一负荷值更多的区间信息,而且预测精度更高,能够更好地指导电力系统相关决策。 展开更多
关键词 高斯模糊 信息粒化 改进小波神经网络 短期负荷 区间预测
在线阅读 下载PDF
基于改进小波神经网络和灰色模型的装备性能参数预测 被引量:9
2
作者 李梦妍 于文震 《电子测量技术》 2016年第3期18-22,共5页
装备性能参数预测是装备系统故障预测与健康管理的重要组成部分,对于提高装备保障效能有重大意义。本文提出了一种基于灰色模型和改进小波神经网络的组合预测模型。在灰色预测的基础上,训练小波神经网络进行灰色预测的残差修正,并通过... 装备性能参数预测是装备系统故障预测与健康管理的重要组成部分,对于提高装备保障效能有重大意义。本文提出了一种基于灰色模型和改进小波神经网络的组合预测模型。在灰色预测的基础上,训练小波神经网络进行灰色预测的残差修正,并通过对小波神经网络的改进提高了网络学习效率。对某型雷达中频接受单元的压控振荡器输出频率进行预测,实验证明,该组合模型结合了灰色预测和改进小波神经网络的优点,有较高预测精度和泛化能力。将该组合模型应用于装备状态参数预测具有可行性。 展开更多
关键词 故障与健康管理 灰色预测 改进小波神经网络 残差修正
在线阅读 下载PDF
改进结构的小波神经网络在油田开发指标预测中的应用 被引量:7
3
作者 邴绍献 王华 +3 位作者 李建丽 张孝天 侯春华 王滨 《油气地质与采收率》 CAS CSCD 北大核心 2009年第3期92-94,共3页
由于油藏储层的非均质性和决定油田开发指标因素的不确定性,往往很难对油田开发指标进行准确的预测。针对小波神经网络模型及算法预测油田开发指标存在的不足,提出了改进结构的小波神经网络模型。改进结构的小波神经网络模型使输入指标... 由于油藏储层的非均质性和决定油田开发指标因素的不确定性,往往很难对油田开发指标进行准确的预测。针对小波神经网络模型及算法预测油田开发指标存在的不足,提出了改进结构的小波神经网络模型。改进结构的小波神经网络模型使输入指标同时在不同时间因子和尺度因子的小波基上展开。实例分析结果表明,改进结构的小波神经网络模型不仅继承了小波神经网络的优点,且具有比小波神经网络预测油田开发指标精度更高、训练速度更快的优势,其预测的平均精度达到97.02%,是预测油田开发指标的一种较实用的方法。 展开更多
关键词 油田开发指标 小波神经网络 改进结构的小波神经网络 模型预测
在线阅读 下载PDF
基于改进集成多隐层小波极限学习神经网络的滚动轴承故障识别研究 被引量:4
4
作者 赵凡超 戴石良 +2 位作者 房华伟 张丽敏 刘伟 《机电工程》 CAS 北大核心 2021年第9期1152-1159,共8页
由于强噪声和非线性、非平稳性等特性,导致滚动轴承振动信号存在难以提取和其工况状态难以辨识的问题,对此提出了一种基于改进集成多隐层小波极限学习神经网络的滚动轴承故障识别模型。首先,使用了谱分割小波变换,将采集到的滚动轴承振... 由于强噪声和非线性、非平稳性等特性,导致滚动轴承振动信号存在难以提取和其工况状态难以辨识的问题,对此提出了一种基于改进集成多隐层小波极限学习神经网络的滚动轴承故障识别模型。首先,使用了谱分割小波变换,将采集到的滚动轴承振动信号分解为若干本征模态分量;然后,选择了较能反映轴承运行工况特征的模态分量,并加以了重构;最后,利用了不同小波函数设计了不同的多隐层小波极限学习神经网络,并加入了卷积机制,将重构后的信号输入不同的深层网络,进行了特征学习与故障识别,利用集成方法得到了最后的滚动轴承故障识别结果。研究结果表明:提出方法的平均故障识别准确率达到99.42%,标准差仅为0.11;该方法自动特征提取能力和工况识别能力优于深度稀疏自动编码器、深度降噪自动编码器和深度信念网络等深度学习方法,适用于滚动轴承故障的自动识别。 展开更多
关键词 滚动轴承 集成学习 故障识别 极限学习机 小波变换 改进集成多隐层小波极限学习神经网络
在线阅读 下载PDF
基于GA优化IWNN的短时交通流量预测方法 被引量:7
5
作者 吴凡 孙建红 +1 位作者 葛鹤银 刘景夏 《实验室研究与探索》 CAS 北大核心 2016年第5期134-137,212,共5页
由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型... 由于交通流量的非线性、复杂性和不确定性,确定数学模型的预测方法难以满足交通管理控制中对预测精度和收敛速度的要求。为了对交通流进行准确、实时、高效的预测,提出将小波理论与神经网络相结合,并改进网络的训练过程从而构建改进型小波神经网络;同时运用遗传算法优化网络的初始权值,最终提高了预测精度,加快了收敛速度,避免陷入局部极小。通过仿真和分析,提出的方法具有较好的预测结果。 展开更多
关键词 交通拥堵 短时交通流量预测 改进小波神经网络 遗传算法
在线阅读 下载PDF
基于IEMD和GA-WNN的断路器分合闸线圈故障诊断方法 被引量:14
6
作者 李天辉 庞先海 +3 位作者 范辉 甄利 顾朝敏 董驰 《中国电力》 CSCD 北大核心 2022年第5期111-121,共11页
真空断路器二次回路或操动机构运行状态能通过电流曲线特征反映。首先,通过对真空断路器分合闸线圈铁心卡涩、电压异常(过高或过低)和击穿3种常见故障进行实验室模拟,创建了故障电流曲线特征库。其次,利用故障电流信号经过经验模态分解... 真空断路器二次回路或操动机构运行状态能通过电流曲线特征反映。首先,通过对真空断路器分合闸线圈铁心卡涩、电压异常(过高或过低)和击穿3种常见故障进行实验室模拟,创建了故障电流曲线特征库。其次,利用故障电流信号经过经验模态分解后的经验模态分量中的能量密度乘对应平均周期为恒定常数的性质,提出一种改进经验模态分解方法来提取分合闸线圈电流特征值,并将其作为小波神经网络的输入样本集。并在此基础上,提出一种改进遗传算法与小波神经网络结合的断路器故障诊断方法。该方法利用改进遗传算法对小波神经网络参数进行寻优,旨在解决小波神经网络参数敏感问题,进而提高诊断算法收敛速度和故障诊断准确率。仿真结果表明:与传统小波神经网络诊断方法相比,利用遗传算法改进的小波神经网络方法诊断正确率高达91%,提高了10个百分点。 展开更多
关键词 断路器 分合闸线圈 改进集合模态分解 改进小波神经网络 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部