改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)...改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)的关系,给出了格、站点网资料SVD方法中均匀化订正的方法,进而得到了改进的奇异值分解(ASVD)方法。将ASVD方法、SVD方法用于中国60a(1951—2010年)160站冬季气温、降水同期相关系数矩阵C的分析,结果表明:ASVD方法的前4个主要模态的模方拟合率和累积模方拟合率均明显高于SVD方法;ASVD方法前两个奇异向量典型场图上高绝对值区与C模方图上高值区的关系明显较SVD方法合理。由此论证了SVD方法中资料均匀化订正的必要性,验证了实际分析中ASVD方法的效果。展开更多
利用奇异值分解和可能满意度方法,提出了一种新的层次分析法权重计算、一致性检验与改进过程.根据矩阵最优近似定理和K u llback-Leib ler信息法则,指出奇异值分解所得结果是对决策偏好的最优近似,根据可能满意度方法,利用判断矩阵的最...利用奇异值分解和可能满意度方法,提出了一种新的层次分析法权重计算、一致性检验与改进过程.根据矩阵最优近似定理和K u llback-Leib ler信息法则,指出奇异值分解所得结果是对决策偏好的最优近似,根据可能满意度方法,利用判断矩阵的最大特征值及其F roben ius范数,定义判断矩阵的可能度与满意度,分别考察一致性改进程度和相对原始判断矩阵的信息偏离程度,并将两者并合为一个能够全面衡量一致性改善效果的综合指标:判断矩阵的可能满意度.通过与加权几何平均改进方法相结合,在最大限度保留决策者原始判断信息条件下,逐步达到可接受的一致性.给出了改进算法的收敛性证明,并利用典型算例进行对比分析.展开更多
针对电磁斥力机构真空快速开关的机械状态监测问题,提出了一种最大奇异值能量熵(energy entropy of maximum singular value,EEMSE)和随机森林的故障诊断方法。首先,在真空快速开关中采集振动信号,对振动信号进行改进S变换得到模矩阵,...针对电磁斥力机构真空快速开关的机械状态监测问题,提出了一种最大奇异值能量熵(energy entropy of maximum singular value,EEMSE)和随机森林的故障诊断方法。首先,在真空快速开关中采集振动信号,对振动信号进行改进S变换得到模矩阵,随后对该矩阵的子矩阵进行奇异值分解,再利用信息熵理论对最大奇异值求熵得到特征向量,最后将特征向量输入随机森林模型进行故障分类和诊断。与不同特征量和分类器比较后的结果表明,文中提出的真空快速开关机械故障诊断方法特征一致性好,模型诊断速度较快,对实验样本总体诊断准确率达到了100%。展开更多
针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)...针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断.展开更多
文摘改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)的关系,给出了格、站点网资料SVD方法中均匀化订正的方法,进而得到了改进的奇异值分解(ASVD)方法。将ASVD方法、SVD方法用于中国60a(1951—2010年)160站冬季气温、降水同期相关系数矩阵C的分析,结果表明:ASVD方法的前4个主要模态的模方拟合率和累积模方拟合率均明显高于SVD方法;ASVD方法前两个奇异向量典型场图上高绝对值区与C模方图上高值区的关系明显较SVD方法合理。由此论证了SVD方法中资料均匀化订正的必要性,验证了实际分析中ASVD方法的效果。
文摘针对电磁斥力机构真空快速开关的机械状态监测问题,提出了一种最大奇异值能量熵(energy entropy of maximum singular value,EEMSE)和随机森林的故障诊断方法。首先,在真空快速开关中采集振动信号,对振动信号进行改进S变换得到模矩阵,随后对该矩阵的子矩阵进行奇异值分解,再利用信息熵理论对最大奇异值求熵得到特征向量,最后将特征向量输入随机森林模型进行故障分类和诊断。与不同特征量和分类器比较后的结果表明,文中提出的真空快速开关机械故障诊断方法特征一致性好,模型诊断速度较快,对实验样本总体诊断准确率达到了100%。
文摘针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断.