提出了一种基于多重信号分类(multiple signal classification,MUSIC)与模式搜索算法(pattern search algorithm,PSA)的异步电动机转子断条故障检测新方法。MUSIC方法对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以...提出了一种基于多重信号分类(multiple signal classification,MUSIC)与模式搜索算法(pattern search algorithm,PSA)的异步电动机转子断条故障检测新方法。MUSIC方法对于短时信号具备高频率分辨力,可以准确计算转子断条故障特征分量以及其他分量的频率;但对诸频率分量幅值和初相角则无法准确求解。因此引入PSA确定诸频率分量的幅值、初相角,并对1台Y100L-2型3 kW笼型异步电动机完成了转子断条故障检测实验。实验结果表明:基于MUSIC与PSA的异步电动机转子断条故障检测方法切实可行,适用于负荷波动、噪声等干扰严重情况。展开更多
矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但...矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但是随着信噪比降低、信号源方位间隔减小,传统MUSIC算法定向精度及分辨概率显著下降。本文采用最小二乘法设计适用于矢量水听器水平阵列的矩阵空域滤波器,用于阵列数据的空间滤波预处理,可以对阻带扇面噪声进行有效抑制。由滤波后的数据协方差矩阵可以得到新的噪声子空间,在传统MUSIC算法基础上修正通带扇面内阵列流型的畸变后即可得到滤波后MUSIC算法的方位谱。仿真结果表明,当信噪比较低时,改进算法有效提高了通带扇面内目标方位分辨性能。最后本文对四基元矢量水平阵列海试数据进行了处理,改进算法对窄带信号定向较常规算法-3 dB束宽减小了13°,旁瓣级降低约8 dB。对有一定带宽的行船辐射噪声定向处理得到了更加精确的航迹图,海试数据处理结果证明了该算法的可行性和有效性。展开更多
随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GT...随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GTD散射中心参数对刻画目标散射特性犹为重要。针对经典多重信号分类(multiple signal classification,MUSIC)法仅利用目标原始回波数据、参数估计精度不高这一问题,提出一种改进的MUSIC算法对散射参数估计提取。改进的MUSIC算法通过对原始回波数据取共轭,构建新的总协方差矩阵,有效利用了目标原始回波数据的共轭信息。仿真结果表明,与经典MUSIC算法相比,改进的MUSIC算法参数估计精度更高,雷达散射截面重构拟合程度更好,且运算量增加不大,可有效提取出隐身目标的散射中心。展开更多
超宽带测向系统中,天线体积受限严重影响到系统的测向精度和解模糊能力,且天线阵列的孔径限制着阵列最多能分辨的目标信号个数,而一些优秀的算法如空间平滑算法和旋转不变子空间(estimation of signalparameters via rotational invaria...超宽带测向系统中,天线体积受限严重影响到系统的测向精度和解模糊能力,且天线阵列的孔径限制着阵列最多能分辨的目标信号个数,而一些优秀的算法如空间平滑算法和旋转不变子空间(estimation of signalparameters via rotational invariance technique,ESPRIT)算法损失了天线阵列孔径。针对这些问题,在传统的四阶累积量多重信号分类(multiple signal classification,MUSIC)算法基础上提出了一种改进的算法。该算法根据四阶累积量矩阵构成的规律,去除了原四阶累积量矩阵的数据冗余,有效地减小了运算时间,为其实际应用提供了必要条件。计算机仿真和实测数据仿真的结果表明,本改进算法可以快速地实现虚拟阵列扩展,同时对有色高斯噪声也有一定的抑制作用。展开更多
在军事领域中,机载多输入多输出(multiple input multiple output,MIMO)雷达既要探测机动目标,又要防止被截获接收机侦收。针对这一问题,提出了低截获的单基地非均匀阵列MIMO雷达改进多信号分类(multiple signal classification,MUSIC)...在军事领域中,机载多输入多输出(multiple input multiple output,MIMO)雷达既要探测机动目标,又要防止被截获接收机侦收。针对这一问题,提出了低截获的单基地非均匀阵列MIMO雷达改进多信号分类(multiple signal classification,MUSIC)算法。通过对MIMO雷达匹配滤波后的接收信号进行降维处理、白化处理、时频分析、时频点筛选、正交联合对角化等信号处理,实现了低信噪比(signal to noise ratio,SNR)、低信号持续时间下的方向角估计。研究结果表明,在相同环境下,与MIMO雷达时频MUSIC算法相比,低截获MIMO雷达改进MUSIC算法空间谱指向精度有所提高,可分辨角度差仅为1°的相邻目标,适用SNR降低2 dB且保证了低截获性能。展开更多
多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存...多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存在多个入射信号时便无法搜索全部解。为了解决该问题,在粒子群算法的基础上,借鉴小生境思想提出了小生境粒子群算法,利用顺序聚类算法将粒子划分到不同的小生境,并根据小生境的迭代数选择不同搜索策略,兼顾了搜索广度和深度。仿真结果表明,改进粒子群算法在进行多谱峰搜索时能大幅降低搜索时间并搜索到全部解,与同类算法相比具有更高的精度和较少设置参数,其精度可以达到10^(-3),用时可以达到网格搜索的1/7000,在基于MUSIC算法的多个信号DOA估计中有重要的应用价值。展开更多
针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在...针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。展开更多
将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signa...将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。展开更多
文摘矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但是随着信噪比降低、信号源方位间隔减小,传统MUSIC算法定向精度及分辨概率显著下降。本文采用最小二乘法设计适用于矢量水听器水平阵列的矩阵空域滤波器,用于阵列数据的空间滤波预处理,可以对阻带扇面噪声进行有效抑制。由滤波后的数据协方差矩阵可以得到新的噪声子空间,在传统MUSIC算法基础上修正通带扇面内阵列流型的畸变后即可得到滤波后MUSIC算法的方位谱。仿真结果表明,当信噪比较低时,改进算法有效提高了通带扇面内目标方位分辨性能。最后本文对四基元矢量水平阵列海试数据进行了处理,改进算法对窄带信号定向较常规算法-3 dB束宽减小了13°,旁瓣级降低约8 dB。对有一定带宽的行船辐射噪声定向处理得到了更加精确的航迹图,海试数据处理结果证明了该算法的可行性和有效性。
文摘随着隐身技术的发展,雷达目标的边缘绕射等逐渐取代镜面散射成为主要的散射源,因此基于几何绕射理论(geometric theory of diffraction,GTD)的散射中心模型对隐身目标电磁散射特性的描述要比衰减指数和模型更为精确。显然,准确估计出GTD散射中心参数对刻画目标散射特性犹为重要。针对经典多重信号分类(multiple signal classification,MUSIC)法仅利用目标原始回波数据、参数估计精度不高这一问题,提出一种改进的MUSIC算法对散射参数估计提取。改进的MUSIC算法通过对原始回波数据取共轭,构建新的总协方差矩阵,有效利用了目标原始回波数据的共轭信息。仿真结果表明,与经典MUSIC算法相比,改进的MUSIC算法参数估计精度更高,雷达散射截面重构拟合程度更好,且运算量增加不大,可有效提取出隐身目标的散射中心。
文摘超宽带测向系统中,天线体积受限严重影响到系统的测向精度和解模糊能力,且天线阵列的孔径限制着阵列最多能分辨的目标信号个数,而一些优秀的算法如空间平滑算法和旋转不变子空间(estimation of signalparameters via rotational invariance technique,ESPRIT)算法损失了天线阵列孔径。针对这些问题,在传统的四阶累积量多重信号分类(multiple signal classification,MUSIC)算法基础上提出了一种改进的算法。该算法根据四阶累积量矩阵构成的规律,去除了原四阶累积量矩阵的数据冗余,有效地减小了运算时间,为其实际应用提供了必要条件。计算机仿真和实测数据仿真的结果表明,本改进算法可以快速地实现虚拟阵列扩展,同时对有色高斯噪声也有一定的抑制作用。
文摘在军事领域中,机载多输入多输出(multiple input multiple output,MIMO)雷达既要探测机动目标,又要防止被截获接收机侦收。针对这一问题,提出了低截获的单基地非均匀阵列MIMO雷达改进多信号分类(multiple signal classification,MUSIC)算法。通过对MIMO雷达匹配滤波后的接收信号进行降维处理、白化处理、时频分析、时频点筛选、正交联合对角化等信号处理,实现了低信噪比(signal to noise ratio,SNR)、低信号持续时间下的方向角估计。研究结果表明,在相同环境下,与MIMO雷达时频MUSIC算法相比,低截获MIMO雷达改进MUSIC算法空间谱指向精度有所提高,可分辨角度差仅为1°的相邻目标,适用SNR降低2 dB且保证了低截获性能。
文摘多重信号分类(Multiple Signal Classification,MUSIC)算法是波达方向(Direction of Arrival,DOA)估计领域中的经典算法之一,但其谱峰搜索过程的巨大计算量降低了算法的实时性。经典进化算法虽能降低搜索时间,却仅能搜索到一个解,当存在多个入射信号时便无法搜索全部解。为了解决该问题,在粒子群算法的基础上,借鉴小生境思想提出了小生境粒子群算法,利用顺序聚类算法将粒子划分到不同的小生境,并根据小生境的迭代数选择不同搜索策略,兼顾了搜索广度和深度。仿真结果表明,改进粒子群算法在进行多谱峰搜索时能大幅降低搜索时间并搜索到全部解,与同类算法相比具有更高的精度和较少设置参数,其精度可以达到10^(-3),用时可以达到网格搜索的1/7000,在基于MUSIC算法的多个信号DOA估计中有重要的应用价值。
文摘针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。
文摘将高频率分辨力谱估计技术与优化算法相结合而提出一种新的异步电动机转子故障检测方法。针对两种典型的高频率分辨力谱估计技术——多重信号分类(multiple signalclassification,MUSIC)与旋转不变信号参数估计技术(estimation of signal parameters via rotational invariancetechnique,ESPRIT),应用模拟转子故障的定子电流信号测试其频率分辨力、精度等性能,结果表明:即使对于短时信号,二者仍具高频率分辨力,可以准确地分辨定子电流信号中转子故障特征分量、主频分量之频率;但对其幅值、初相角,仅能提供"粗糙"估计。为此,尝试以优化算法——模拟退火算法(simulated annealing algorithm,SAA)与模式搜索算法(pattern search algorithm,PSA)确定各分量的幅值与初相角。同时,分别对MUSIC与ESPRIT、SAA与PSA做了性能对比,遴选优者并应用于转子故障检测。最后,针对转子断条故障进行实验,结果表明:基于高频率分辨力谱估计技术与优化算法的异步电动机转子故障检测方法有效、可行,即使在负载波动、噪声等干扰严重情况下仍然适用。