针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每...针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。展开更多
文摘为了同时优化质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)系统的效率和输出功率,文章首先建立PEMFC系统的机理模型,并分析系统效率和输出功率特性;其次针对传统灰狼算法(grey wolf optimizer,GWO)的初始化种群不均匀和易出现早熟收敛的问题,引入佳点集种群初始化策略和非线性收敛因子策略,并由此提出一种改进多目标灰狼优化算法(multi-objective grey wolf optimizer,MOGWO),有效改善了灰狼算法的搜索精度和收敛性能;然后针对改进多目标灰狼优化算法求得的Pareto最优解集,使用TOPSIS评价法得出逼近理想解的最佳解,确定PEMFC系统的最佳运行条件;最后对所提出的MOGWO算法进行仿真验证,结果表明该算法能够有效提高PEMFC系统在实际运行中的输出功率和系统效率。
文摘针对导弹打击地面目标时的瞄准点优选问题,提出了一种利用改进灰狼优化算法(improved grey wolf op timization,IGWO)选取最优瞄准点的瞄准点选择方法。该算法基于维度学习的狩猎搜索策略(dimension learning-based hunting,DLH),为每个瞄准点构建相邻的瞄准点集合,集合中的瞄准点可以互相共享信息,增强局部搜索和全局搜索之间的平衡,并保持多样性。在仿真实验中,将毁伤评估模型的评估函数作为瞄准点选取好坏的评估函数,并且设计导弹打击地面目标的实例对瞄准点选择方法进行验证,实验结果表明,该方法求得的瞄准点具有较高的可信度,为火力筹划中瞄准点的寻优提供了新方法。