期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于IMIE、MCFS和SSA-ELM的离心泵故障诊断方法 被引量:4
1
作者 辜文娟 张扬 《机电工程》 CAS 北大核心 2023年第9期1456-1463,共8页
采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习... 采用多尺度排列熵对离心泵振动信号进行分析时,存在忽略信号幅值信息以及粗粒化处理存在不足的问题,从而导致离心泵的故障识别准确率不高,为此,提出了一种基于改进多尺度增长熵(IMIE)、多聚类特征选择(MCFS)和麻雀搜索算法优化极限学习机(SSA-ELM)的离心泵故障诊断方法。首先,基于改进粗粒化处理,提出了改进多尺度增长熵(IMIE)方法,将其用于提取故障特征,构造了反映离心泵损伤属性的特征矩阵;随后,采用多聚类特征选择(MCFS),对原始故障特征进行了重要性排序,获得了对分类识别贡献度更高的故障特征,提高了故障特征的质量;最后,将低维的敏感特征输入至基于麻雀搜索算法(SSA)的极限学习机(ELM)中,进行了离心泵故障分类,完成了离心泵不同故障类型的识别任务;并采用离心泵故障数据集,对基于IMIE、MCFS和SSA-ELM的故障诊断方法的有效性进行了实验验证。研究结果表明:所提故障诊断方法的故障识别准确率达到了100%,多次实验的平均准确率和标准差也优于其他对比的故障诊断方法,即IMIE能够准确地提取信号中的故障信息,进而表征离心泵的健康状态;SSA-ELM能够准确地识别离心泵的故障类型,证明该方法具有一定的有效性和优越性。 展开更多
关键词 叶片式泵 改进粗粒化处理 改进多尺度增长熵 多聚类特征选择 麻雀搜索算法 极限学习机 特征矩阵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部