期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
1
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:4
2
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEEMDAN) 多尺度排列 信号降噪
在线阅读 下载PDF
基于改进多元多尺度加权排列熵的齿轮箱故障诊断 被引量:5
3
作者 赵家浩 廖晓娟 唐锡雷 《组合机床与自动化加工技术》 北大核心 2022年第12期48-52,共5页
齿轮箱振动存在多个传递路径,而典型齿轮箱故障诊断方法一般使用单个路径的单通道振动信号,易造成其它通道信息的遗漏。为充分利用不同路径振动信号故障信息,增强故障特征的质量,引入了多元多尺度加权排列熵,对其粗粒化方式进行了完善,... 齿轮箱振动存在多个传递路径,而典型齿轮箱故障诊断方法一般使用单个路径的单通道振动信号,易造成其它通道信息的遗漏。为充分利用不同路径振动信号故障信息,增强故障特征的质量,引入了多元多尺度加权排列熵,对其粗粒化方式进行了完善,提出了改进多元多尺度加权排列熵(IMMWPE),实现齿轮箱多通道振动信号的故障特征提取。基于此,提出了一种结合IMMWPE、成对邻近特征和粒子群优化支持向量机的齿轮箱故障诊断方法。通过齿轮箱多通道数据分析,将其与多元多尺度样本熵、多元多尺度排列熵和多元多尺度模糊熵等方法进行对比,结果证明该方法能够准确识别齿轮箱的各类故障,而且优于对比方法。 展开更多
关键词 齿轮箱 改进多多尺度加权排列 成对邻近特征 故障诊断
在线阅读 下载PDF
VMD改进多尺度排列熵和LLTSA的列车车轮损伤诊断 被引量:1
4
作者 田英 刘启跃 《机械科学与技术》 CSCD 北大核心 2021年第10期1530-1535,共6页
针对列车车轮损伤振动信号特征难以提取的问题,本文提出基于变分模态分解(VMD)改进多尺度排列熵和线性局部切空间排列算法(LLTSA)的车轮损伤诊断方法。首先利用VMD方法分解原始振动信号得到若干个模态分量,计算各模态分量的改进多尺度... 针对列车车轮损伤振动信号特征难以提取的问题,本文提出基于变分模态分解(VMD)改进多尺度排列熵和线性局部切空间排列算法(LLTSA)的车轮损伤诊断方法。首先利用VMD方法分解原始振动信号得到若干个模态分量,计算各模态分量的改进多尺度排列熵,然后采用LLTSA方法进行特征维数约简,并与等距映射流形算法(ISOMAP)降维结果对比,获得最优的低维特征向量,最后将低维特征向量作为核极限学习机(KELM)的输入进行分类辨识。实验分析结果表明,该方法能够成功识别出车轮损伤状态。 展开更多
关键词 车轮损伤 诊断 VMD 改进多尺度排列 LLTSA
在线阅读 下载PDF
基于多尺度排列熵的滚动轴承故障特征提取 被引量:11
5
作者 王泽 王红军 《组合机床与自动化加工技术》 北大核心 2020年第8期30-34,38,共6页
针对现有滚动轴承故障识别精度低的问题,存在冗杂信息较多和分解识别计算量大的问题,将集合经验模态分解(ensemble empirical mode decomposition,EEMD)与多尺度排列熵、邻域粗糙集(neighborhood rough set,NRS)进行结合提出一种针对轴... 针对现有滚动轴承故障识别精度低的问题,存在冗杂信息较多和分解识别计算量大的问题,将集合经验模态分解(ensemble empirical mode decomposition,EEMD)与多尺度排列熵、邻域粗糙集(neighborhood rough set,NRS)进行结合提出一种针对轴承系统故障特征提取的方法。文章对传统的邻域粗糙集算法进行改进,将故障信号进行EEMD分解和多尺度排列熵计算后形成条件属性,从而建立故障识别决策表,然后利用邻域粗糙集对决策表进行属性约简消除冗余的属性。最后将约简后的敏感特征子集输入概率神经网络中进行模式识别。通过实验结果表明,该文提出的方法对滚动轴承故障特征提取以及对于故障的精确识别是十分有效的,能够减小计算量同时精确实现故障诊断。 展开更多
关键词 集合经验模态分解 多尺度排列 改进邻域粗糙集 滚动轴承故特征
在线阅读 下载PDF
基于多尺度排列熵和IWOA-SVM的滚动轴承故障诊断 被引量:6
6
作者 张炎亮 李营 《电子测量技术》 北大核心 2023年第19期29-34,共6页
针对滚动轴承信号表现出的非线性和非平稳性特征问题,合理的特征选择可提高故障诊断率,提出基于多尺度排列熵(MPE)与改进鲸鱼算法(IWOA)优化支持向量机(SVM)的故障诊断模型。首先,通过变分模态分解(VMD)进行信号降噪预处理,计算多尺度... 针对滚动轴承信号表现出的非线性和非平稳性特征问题,合理的特征选择可提高故障诊断率,提出基于多尺度排列熵(MPE)与改进鲸鱼算法(IWOA)优化支持向量机(SVM)的故障诊断模型。首先,通过变分模态分解(VMD)进行信号降噪预处理,计算多尺度排列熵进行信号特征重构;其次,引入惯性动态权重对鲸鱼算法进行改进,通过训练SVM参数,建立IWOA-SVM故障诊断模型;最后用美国凯斯西储大学轴承数据集进行仿真。结果表明,相较于多尺度熵,MPE可表征的故障特征信息更加丰富,故障识别率提高了2.1%;与同类优化算法相比,采用IWOA对SVM进行优化的故障诊断模型,收敛速度快、训练时间短、故障识别精度高,可对滚动轴承进行有效诊断。 展开更多
关键词 滚动轴承故障诊断 多尺度排列 惯性动态权重 改进鲸鱼优化算法 支持向量机
在线阅读 下载PDF
基于改进小波阈值—CEEMDAN的变压器局部放电超声波信号白噪声抑制方法 被引量:15
7
作者 周晶 罗日成 黄军 《高压电器》 CAS CSCD 北大核心 2024年第1期163-171,共9页
为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEE... 为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的变压器局部放电超声波信号去噪方法。首先,通过对放电信号进行CEEMDAN分解得到一系列由高频到低频的本征模函数IMF(intrinsic mode function);然后,利用多尺度排列熵(multi-scale permutation entropy,MPE)算法计算各阶IMF分量的排列熵PE(permutation entropy),根据各IMF的排列熵值确定信号的去噪阈值与有效阈值。对高于去噪阈值的IMF分量采用改进小波阈值法进行去噪处理,对低于有效阈值的IMF分量视为基线漂移进行剔除。最后,通过重构去噪分量与剩余分量来获得去噪后的超声波信号。仿真和实验结果均表明,文中所提出的去噪算法大大提高了信号的信噪比,并保留了原始超声波信号中的有效信息,对提高后续利用超声波信号进行局部放电模式识别及定位的精确性具有重要意义。 展开更多
关键词 局部放电 超声波信号去噪 改进小波阈值 多尺度排列 CEEMDAN
在线阅读 下载PDF
基于谱熵梅尔积和改进VMD的轴承故障预警 被引量:10
8
作者 马小平 李博华 +2 位作者 蔡蔓利 韩正化 陈泽彭 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第11期1179-1187,共9页
针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点... 针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点效应对提取效果造成的影响,提出能量差网格搜索法对VMD进行参数寻优,并用支持向量回归机对端点效应进行抑制,结合多尺度加权排列熵在检测振动信号随机性方面的优势,充分发挥VMD对信号的重构能力,对起始点后的故障段进行特征捕捉.通过实际轴承故障信号的实验及数据分析,验证了该方法在轴承故障预警中的有效性. 展开更多
关键词 梅尔积 改进变分模态分解 多尺度加权排列 轴承故障诊断
在线阅读 下载PDF
基于改进深度残差收缩网络的电缆早期故障识别 被引量:1
9
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(ICEEMDAN) 复合多尺度排列 改进深度残差收缩网络 故障识别
在线阅读 下载PDF
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
10
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列 变分模态分解
在线阅读 下载PDF
基于改进EEMD与混沌振子的配电网故障选线 被引量:18
11
作者 侯思祖 郭威 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第4期77-87,共11页
提出改进的集合经验模态分解(MEEMD)和混沌振子相结合的电网故障微弱信号检测方法。首先,建立神经网络预测模型,通过神经网络对配网各线路零序电流进行短时预测,滤除故障信号中的背景信号;其次,为了检测配网发生单相接地故障后微弱的5... 提出改进的集合经验模态分解(MEEMD)和混沌振子相结合的电网故障微弱信号检测方法。首先,建立神经网络预测模型,通过神经网络对配网各线路零序电流进行短时预测,滤除故障信号中的背景信号;其次,为了检测配网发生单相接地故障后微弱的5次谐波信号,提出结合多尺度排列熵和完备集合经验模态分解(CEEMD)改进的改进的集合经验模态分解算法;处理已经滤除背景信号的故障信号,提取其第一固有模态函数作为混沌振子的输入。混沌振子对和内驱动力信号同频的外策动力信号有较高的敏感性,通过混沌振子输出的相图完成电网故障选线。 展开更多
关键词 多尺度排列 改进的集合经验模态分解 混沌振子 相图
在线阅读 下载PDF
基于IIVY-SVMD-MPE-SVM的开关柜局部放电故障识别
12
作者 解骞 郑胜瑜 +3 位作者 刘兴华 李辉 党建 解佗 《实验技术与管理》 北大核心 2025年第4期26-36,共11页
针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(su... 针对开关柜局部放电故障信息表征困难及局部放电故障识别准确率低等问题,该文提出了一种基于改进常青藤算法(improved Ivy algorithm,IIVY)的自动优化连续变分模态分解(successive variational mode decomposition,SVMD)与支持向量机(support vector machine,SVM)的模式识别算法,实现了局部放电类型的故障识别。首先,融合空间金字塔匹配混沌映射、自适应t分布与动态自适应权三种策略提出IIVY算法;其次,对局部放电原始超声波信号进行SVMD并提取多尺度排列熵(multivariate permutation entropy,MPE),建立基于IIVY-SVMD-MPE的局部放电特征提取策略,利用IIVY算法自适应地选取SVMD惩罚因子α,结合相关系数筛选出最大的三个本征模态函数(intrinsic mode function,IMF)分量提取MPE,构建多维融合特征数据集;再次,提出并建立基于IIVY-SVM的开关柜局部放电故障识别模型,利用IIVY对SVM中惩罚参数C及核参σ进行自适应寻优;最后,通过对比验证表明所建立模型综合识别率更高、在不同评价指标上表现更佳,综合识别准确率达到98.8%,有效提高了故障识别的准确性与可靠性。 展开更多
关键词 超声波 改进常青藤算法 连续变分模态分解 多尺度排列
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型
13
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多元多尺度反向散布 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
14
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于SPA和IRCMMPE的旋转机械损伤识别方法
15
作者 李恒亮 张思婉 郭衡 《机电工程》 北大核心 2025年第6期1045-1054,共10页
基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策... 基于单通道信号的旋转机械故障诊断方法的故障诊断效果通常比较依赖信号的质量,针对这一问题,提出了一种基于平滑先验分析(SPA)、改进精细复合多变量多尺度排列熵(IRCMMPE)和麻雀搜索算法优化支持向量机(SSA-SVM)的旋转机械损伤识别策略。首先,使用SPA将单通道信号分解为趋势项和去趋势项两种完全不同的分量,减少了分量的冗余,并将其组装为多通道信号以实现对样本的扩充;然后,采用IRCMMPE对多通道信号进行了特征提取以对比验证两个分量之间的相关性,获取了更能反映故障特性的特征;最后,将故障特征输入至SSA-SVM分类器中进行了故障识别,完成了对旋转机械的故障辨识和故障程度的判断,利用三个旋转机械数据集对SPA-IRCMMPE故障诊断方法的有效性进行了实验分析,并与其他故障诊断方法进行了对比研究。研究结果表明:SPA-IRCMMPE模型在诊断旋转机械不同故障类型时分别取得了100%和99.2%的识别准确率,平均识别准确率分别为99.76%和99.92%;而自制数据集的诊断精度达到了100%。相较于其他故障诊断方法,SPA-IRCMMPE模型仅需使用单个通道的振动信号且无需进行分量重要性评估,避免了分量取舍的问题,对振动信号的利用效率较高。 展开更多
关键词 旋转机械单通道信号 故障诊断 麻雀搜索算法优化支持向量机 改进精细复合多变量多尺度排列 平滑先验分析 离心泵 滚动轴承
在线阅读 下载PDF
基于熵-流特征和樽海鞘群优化支持向量机的故障诊断方法 被引量:25
16
作者 王振亚 姚立纲 +1 位作者 蔡永武 张俊 《振动与冲击》 EI CSCD 北大核心 2021年第6期107-114,共8页
针对旋转机械设备故障特征提取困难的问题,提出一种熵-流特征和樽海鞘群优化支持向量机(salp swarm optimization support vector machine,SSO-SVM)的故障诊断方法。利用改进多尺度加权排列熵(improved multiscale weighted permutation... 针对旋转机械设备故障特征提取困难的问题,提出一种熵-流特征和樽海鞘群优化支持向量机(salp swarm optimization support vector machine,SSO-SVM)的故障诊断方法。利用改进多尺度加权排列熵(improved multiscale weighted permutation entropy,IMWPE)提取机械设备不同工况下的故障特征;采用监督等度规映射(S-Isomap)流形学习进行降维处理,获取低维的熵-流特征集;将熵-流特征输入至SSO-SVM多故障分类器进行识别与诊断。行星齿轮箱故障诊断实验分析结果表明:IMWPE+S-Isomap熵-流特征提取方法优于现有的多尺度排列熵(multiscale permutation entropy,MPE)、多尺度加权排列熵(multiscale weighted permutation entropy,MWPE)和IMWPE等熵值特征提取方法以及IMWPE+等度规映射(Isomap)和IMWPE+线性局部切空间排列(linear local tangent space alignment,LLTSA)等熵-流特征提取方法;樽海鞘群算法对支持向量机参数寻优效果优于粒子群、灰狼群、人工蜂群和蝙蝠群等算法;所提故障诊断方法识别精度达到100%,能够有效诊断出行星齿轮箱各工况类型。 展开更多
关键词 故障诊断 行星齿轮箱 -流特征 改进多尺度加权排列(IMWPE) 等度规映射(Isomap) 樽海鞘群优化算法(SSO) 支持向量机(SVM)
在线阅读 下载PDF
基于改进EEMD与GA-BP的谐振接地故障选线方法 被引量:18
17
作者 韩祥民 刘晓波 +3 位作者 刘敏 邱知 徐邦贤 唐辉 《智慧电力》 北大核心 2021年第12期80-87,共8页
针对谐振接地系统发生接地故障,存在暂态信号特征辨识度低,且单一特征作为选线判据易受故障条件影响等问题,提出一种基于改进EEMD与GA-BP神经网络的故障选线方法。首先使用边界局部特征尺度延拓法加集合经验模态分解和多尺度排列熵算法... 针对谐振接地系统发生接地故障,存在暂态信号特征辨识度低,且单一特征作为选线判据易受故障条件影响等问题,提出一种基于改进EEMD与GA-BP神经网络的故障选线方法。首先使用边界局部特征尺度延拓法加集合经验模态分解和多尺度排列熵算法的混合算法(MEEMD)分解暂态电流信号,各项分解指标说明MEEMD能准确区分高频特征分量和基频分量并有效改进端点效应和抑制模态混淆。然后提取重构的高频分量能量、方向以及裕度因子等特征并将其用来训练、测试GA-BP神经网络。结果表明所提出的选线方法有较高的准确率且不受线路类型、接地电阻影响,有较强的鲁棒性和容错性。 展开更多
关键词 谐振接地系统 多尺度排列 改进EEMD GA-BP神经网络
在线阅读 下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
18
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列 支持向量机 本征模态函数 基于维度学习的狩猎
在线阅读 下载PDF
IMRPE和AO-SVM在往复压缩机故障识别中的应用 被引量:5
19
作者 李占锋 张军昌 《机电工程》 CAS 北大核心 2023年第12期1983-1990,共8页
针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断... 针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断方法。首先,采用具有优异特征表达性能的IMRPE方法来提取往复压缩机声音信号的故障信息,构建了反映样本故障特征属性的故障特征向量;然后,利用t-SNE方法对故障特征进行了特征降维处理,以降低故障特征维数和去除冗余特征,从而获得了低维的敏感特征;最后,利用AO方法对SVM的惩罚系数和核参数进行了自适应搜索,从而建立了结构参数最优的分类器,并将低维的敏感故障特征输入至AO-SVM分类器中,进行了训练和分类,依据测试样本的输出标签完成了样本的故障识别;以往复压缩机声音信号故障数据为对象开展了研究,并评估了IMRPE-t-SNE-AO-SVM方法的有效性和稳定性。研究结果表明:IMRPE-t-SNE-AO-SVM方法的故障识别精度达到了97%,不仅能够用于准确且稳定地识别往复压缩机的故障类型,提高故障识别的精度,而且在准确率和稳定性方面优于其它对比方法。 展开更多
关键词 压缩机 故障诊断 改进多尺度反向排列熵 t-分布邻域嵌入 天鹰优化器优化支持向量机
在线阅读 下载PDF
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:31
20
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列(MMPE) 支持向量机(SVM) 多尺度排列 均值(PMMPE)故障程度评估
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部