混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse...混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。展开更多
针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的...针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。展开更多
为了解决高比例新能源地区电网中新能源不确定性所导致的N-1故障线路过载问题,提出一种计及新能源不确定性并应用混合型潮流控制器(hybrid power flow controller,HPFC)控制模式的电网潮流优化方法。首先,建立了适应于多线路控制的HPFC...为了解决高比例新能源地区电网中新能源不确定性所导致的N-1故障线路过载问题,提出一种计及新能源不确定性并应用混合型潮流控制器(hybrid power flow controller,HPFC)控制模式的电网潮流优化方法。首先,建立了适应于多线路控制的HPFC稳态计算模型,并给出了在不同控制模式下的HPFC运行约束条件。其次,以电网有功网损和线路负载率指标为目标函数,考虑N-1安全约束和HPFC运行约束,建立应用HPFC控制模式的电网潮流优化模型。然后,通过模糊C均值聚类获取反映新能源出力、负荷不确定性的场景集合,并采用多目标多元宇宙优化算法(multi-objective multi-verse optimization,MOMVO)求解所提优化模型。最后,将所提潮流优化方法应用于江苏南通某地区电网。结果表明,所提方法能有效提高电网的经济性与静态安全性,且计算结果具有较好的稳定性。展开更多
文摘混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。
文摘针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。