期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进SAE-SOFTMAX的模拟电路故障诊断方法 被引量:18
1
作者 袁莉芬 宁暑光 +2 位作者 何怡刚 张朝龙 吕密 《电子测量与仪器学报》 CSCD 北大核心 2018年第7期36-45,共10页
针对传统神经网络存在层次太少以及梯度扩散问题,导致基于传统神经网络的模拟电路故障诊断效果不佳,提出一种基于堆叠自动编码器-柔性最大值分类器(SAE-SOFTMAX)的模拟电路故障诊断方法。通过搭建深层次SAE和SOFTMAX分类器的深度学习框... 针对传统神经网络存在层次太少以及梯度扩散问题,导致基于传统神经网络的模拟电路故障诊断效果不佳,提出一种基于堆叠自动编码器-柔性最大值分类器(SAE-SOFTMAX)的模拟电路故障诊断方法。通过搭建深层次SAE和SOFTMAX分类器的深度学习框架,利用预训练与微调的方法完成整体网络的训练。为提高网络泛化能力,使用Dropout技术对网络加以改进优化,以此提取电子电路的底层稀疏特征并完成故障模式的自动识别分类。实例研究同时给出了几种传统神经网络的诊断效果作为对比实验。实验结果说明,所提方法诊断效果与相关评价参数性能优于传统神经网络。最终得到结论,基于改进SAESOFTMAX网络架构与分层训练机制的电子电路故障诊断方法,其整体性能有所提高诊断效果更好,优于传统的神经网络故障诊断方法。 展开更多
关键词 模拟电路 故障诊断 改进堆叠自动编码器 柔性最大值分类器 深度学习
在线阅读 下载PDF
基于ISAE的磨煤机故障预测与诊断方法研究 被引量:13
2
作者 孙同敏 《煤炭工程》 北大核心 2021年第5期148-155,共8页
针对难以从火电厂实际运行数据中获得大量磨煤机故障数据,以及磨煤机精准数学模型难以求取,从而影响其故障诊断策略制定的问题,提出了一种基于简化机理模型的深度学习故障诊断算法,用于有效检测磨煤机的运行状态。基于磨煤机机理模型和... 针对难以从火电厂实际运行数据中获得大量磨煤机故障数据,以及磨煤机精准数学模型难以求取,从而影响其故障诊断策略制定的问题,提出了一种基于简化机理模型的深度学习故障诊断算法,用于有效检测磨煤机的运行状态。基于磨煤机机理模型和状态空间预测控制器,构建了闭合控制系统,通过对不同故障类型的分析和模拟,在充分接近磨煤机的实际运行状态下,获得了大量的故障数据。并通过改进堆叠自动编码器(ISAE)将模拟的故障数据与深度学习算法相结合来建立深度学习故障诊断策略,ISAE以无监督的方式逐层提取故障数据的本质特征,具有很好的学习和识别故障特征的能力,同时通过将磨煤机系统变化快速且显著的变量作为ISAE输入变量,使ISAE兼具了故障诊断和预测的能力。仿真结果也表明,提出的ISAE能够很好地检测出磨煤机的故障,故障诊断准确率高达98.46%,并能提前发出预警。 展开更多
关键词 磨煤机 机理模型 深度学习 故障诊断 改进堆叠自动编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部