期刊文献+
共找到249篇文章
< 1 2 13 >
每页显示 20 50 100
改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究 被引量:2
1
作者 张国浩 王彩玲 +1 位作者 王洪伟 于涛 《光谱学与光谱分析》 北大核心 2025年第2期394-402,共9页
使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总... 使用光谱数据结合融合算法对水体污染物含量进行准确检测以保护水资源已成为一个关键问题。然而,光谱数据的高维特性以及模型的不稳定常常导致预测效果不佳,无法准确的进行检测。本研究提出了一种环保和准确的方法,实现对长江水体中总磷浓度含量的预测。具体而言,首先对测得的长江水质光谱数据进行最大最小归一化和均值中心化两种预处理操作,在消除不同数据量级差异的同时去除了噪声,确保了数据的一致性和可靠性。其次,为了解决光谱数据的高维度问题,采用了核主成分分析(KPCA)方法来降低数据维度并提取特征。KPCA方法通过在高维度的空间中找到一个分类平面,选出能代表原始数据99.42%信息量的前6个主成分,用于后续预测模型的训练。接着在原始粒子群算法的基础上引入了粒子初始化规则、多种群竞争策略、参数自适应更新策略、种群多样性引导策略和粒子变异机制,提高了粒子群的寻优能力,降低粒子陷入局部最优解的概率。并使用改进后的粒子群算法对BP神经网络(BPNN)中的初始化权重和参数大小进行寻优,从而加快网络的收敛效果,提高预测能力。最后,使用本研究所提出的预测模型对测试集中的样本进行总磷浓度的预测,实验结果得到R^(2)为0.975786,RMSE为0.002242,MAE为0.001612。将本模型与当前预测性能较好的其他基准模型进行预测效果的对比,本研究所提出的模型对长江水体总磷浓度预测拟合效果更好,精确度更高。在水资源保护和环境管理领域中使用光谱数据结合融合算法进行预测模型的研究和实践提供了新的思路和观点。 展开更多
关键词 光谱数据 改进粒子群优化算法 bp神经网络 核主成分分析(KPCA) 总磷浓度
在线阅读 下载PDF
改进黑翅鸢算法优化神经网络的室内定位
2
作者 杨晶晶 万里宏 +2 位作者 张雪明 麦鴚 雷俊杰 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期229-237,共9页
针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagati... 针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagation,BP)神经网络的室内定位算法。分别引入Tent混沌映射、透镜成像反向学习策略和黄金正弦策略优化黑翅鸢算法,通过基准测试函数测试证实了IBKA拥有更好的性能,通过IBKA优化神经网络算法的初始权值和阈值建立IBKA-BP神经网络测距模型。在实验室内采集RSSI信号样本数据进行分析,结果表明所提IBKA-BP优化算法均方根误差为21.42 cm,小于PLM、GWO-BP、BKA-BP和ISSA-BP的63.25、47.04、33.77、28.78 cm,且收敛速度更快,在复杂室内环境下定位性能更好。 展开更多
关键词 改进黑翅鸢算法 bp神经网络 RSSI测距算法 路径损耗模
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
3
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进PSO算法 bp神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
改进SSA优化的BP神经网络交通量预测模型 被引量:14
4
作者 陈亮 郝祎纯 +1 位作者 李巧茹 丁景轩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第7期94-101,共8页
为更加准确地进行交通量预测,针对传统的BP神经网络随机赋值、收敛速度慢等问题,提出了改进麻雀搜索算法(sparrow search algorithm,SSA)优化的BP神经网络预测模型。该模型结合SSA位置更新原理和鸡群优化算法中公鸡位置更新方法对麻雀... 为更加准确地进行交通量预测,针对传统的BP神经网络随机赋值、收敛速度慢等问题,提出了改进麻雀搜索算法(sparrow search algorithm,SSA)优化的BP神经网络预测模型。该模型结合SSA位置更新原理和鸡群优化算法中公鸡位置更新方法对麻雀搜索算法进行改进,在避免算法陷入局部最优和位置更新无效的同时有效地提高了算法的收敛速度。利用改进麻雀搜索算法对BP神经网络的权值和阈值进行寻优赋值,得到了改进SSA-BP神经网络预测模型。利用交通量数据,对LSTM神经网络、BP神经网络、SSA-BP神经网络和改进SSA-BP神经网络4种预测模型进行训练和测试,以MAE、MAPE、MSE、RMSE和EC 5个指标对预测结果进行对比分析。结果表明:BP神经网络优于LSTM神经网络,且麻雀搜索算法优化BP神经网络预测模型相较于BP神经网络预测模型MAE降低了0.28 veh/(3 min)、MAPE降低了1%、MSE降低了2.72 veh/(3 min)、RMSE降低了0.04;改进麻雀搜索算法优化BP神经网络预测模型相较于BP神经网络预测模型MAE降低了1.31 veh/(3 min)、MAPE降低了4%、MSE降低了9.2 veh/(3 min)、RMSE降低了0.18,且拟合度更接近于1。改进SSA-BP预测模型的性能优于SSA-BP神经网络预测模型,且有效提高了BP神经网络的预测精度,拟合度达到0.98,该模型适用于交通量预测,能够为智能交通系统提供可靠的预测值。 展开更多
关键词 交通量预测 bp神经网络 改进麻雀搜索算法 权值 阈值
在线阅读 下载PDF
基于改进鲸鱼算法优化神经网络的GPS高程拟合方法 被引量:4
5
作者 钱建国 徐志文 +3 位作者 赵玉国 郭洁 王志强 赵金来 《大地测量与地球动力学》 CSCD 北大核心 2024年第2期122-127,共6页
采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常... 采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常拟合预测模型,并通过两组不同地形特征工程中的GPS数据对模型进行验证。结果表明,利用改进鲸鱼算法优化的BP模型进行GPS高程拟合时可取得更高的精度和稳定性。 展开更多
关键词 改进鲸鱼算法 混沌映射 自适应惯性权重 高程拟合 bp神经网络
在线阅读 下载PDF
改进哈里斯鹰优化算法与BP神经网络组合的滑坡位移高精度预测模型 被引量:6
6
作者 瞿伟 刘祥斌 +2 位作者 李久元 王宇豪 李达 《地球科学与环境学报》 CAS 北大核心 2023年第3期522-534,共13页
开展滑坡位移高精度预测研究对于滑坡灾害的防灾预警具有重要意义。针对哈里斯鹰优化算法(HHO)搜索精度低且会陷入局部最优的问题,对其进行改进并进一步与BP神经网络组合,同时有效兼顾滑坡外部影响因子,发展了一种改进哈里斯鹰优化算法(... 开展滑坡位移高精度预测研究对于滑坡灾害的防灾预警具有重要意义。针对哈里斯鹰优化算法(HHO)搜索精度低且会陷入局部最优的问题,对其进行改进并进一步与BP神经网络组合,同时有效兼顾滑坡外部影响因子,发展了一种改进哈里斯鹰优化算法(IHHO)与BP神经网络组合(IHHO-BP)的滑坡位移高精度预测模型。结合我国典型黄土滑坡——甘肃黑方台党川滑坡HF08、HF05和HF09等3个监测点的北斗/GNSS实测数据,验证了IHHO-BP模型在3个实测数据集中的位移预测精度均优于单一BP神经网络模型,以及哈里斯鹰优化算法、麻雀搜索算法(SSA)、粒子群算法(PSO)、遗传算法(GA)与BP神经网络组合的预测模型。结果表明:引入Levy变异、局部增强和随机化Halton序列种群初始化策略的改进哈里斯鹰优化算法,可有效解决哈里斯鹰优化算法搜索精度低且会陷入局部最优的问题;IHHO-BP模型具有更好的泛化能力,可有效提升滑坡位移的预测精度,该组合预测模型具有更好的推广应用价值。 展开更多
关键词 黄土滑坡 位移预测 改进哈里斯鹰优化算法 bp神经网络 Levy变异 局部增强 随机化Halton序列 黑方台
在线阅读 下载PDF
基于改进灰狼算法优化BP神经网络的短时交通流预测模型 被引量:53
7
作者 张文胜 郝孜奇 +2 位作者 朱冀军 杜甜添 郝会民 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第2期196-203,共8页
准确的短时交通流预测是交通控制和交通诱导的依据.提出一种基于改进灰狼算法(TGWO)优化BP神经网络的短时交通流预测模型(TGWO-BP),有效提高短时交通流预测精度.针对标准灰狼算法(GWO)收敛速度慢,容易陷入局部极值的问题,提出一种自适... 准确的短时交通流预测是交通控制和交通诱导的依据.提出一种基于改进灰狼算法(TGWO)优化BP神经网络的短时交通流预测模型(TGWO-BP),有效提高短时交通流预测精度.针对标准灰狼算法(GWO)收敛速度慢,容易陷入局部极值的问题,提出一种自适应递减的收敛因子,使灰狼算法区分全局搜索和局部搜索;改进灰狼个体的位置更新公式,引入惯性权重,调节惯性权重大小使灰狼算法具有跳出局部极值的能力;对比分析TGWO-BP、GWOBP、PSO-BP、BP这4种短时交通流预测模型,结果显示,TGWO-BP的短时交通流预测模型误差为10.03%,达到较好的预测精度. 展开更多
关键词 智能交通 短时交通流预测 改进灰狼算法(TGWO) bp神经网络 收敛因子 惯性权重
在线阅读 下载PDF
基于改进WOA-BP神经网络的网格化空气质量监测仪数据修正 被引量:1
8
作者 闫续 张国城 +5 位作者 冯端 田莹 沈上圯 杨振琪 董谋 赵红达 《仪表技术与传感器》 CSCD 北大核心 2024年第2期44-49,55,共7页
空气污染严重威胁人类健康,近年来逐渐兴起的基于传感器技术的微型空气监测仪(简称微型站)具有体积小、造价低的优点,符合当前网格化、精细化的空气质量管理模式。但微型站中使用的电化学传感器存在复杂的气体交叉干扰,影响设备的准确... 空气污染严重威胁人类健康,近年来逐渐兴起的基于传感器技术的微型空气监测仪(简称微型站)具有体积小、造价低的优点,符合当前网格化、精细化的空气质量管理模式。但微型站中使用的电化学传感器存在复杂的气体交叉干扰,影响设备的准确性。针对交叉干扰非线性,难以用明确的数学表达式描述的问题,提出将改进鲸鱼算法优化的反向传播(CIWOA-BP)神经网络应用于微型站数据的修正。CIWOA-BP算法结合了BP神经网络善于处理非线性黑箱问题的优势以及CIWOA全局寻优的能力。结果表明:经过CIWOA-BP修正后的微型站可以实现对混合气体中的NO_(2)、CO、O_(3)和SO_(2)的准确定量分析,4种气体的计算值和实际值之间的拟合优度(R^(2))均超过了0.97,效果优于一元、多元线性回归和传统的BP神经网络,可以很好地提升设备对空气污染物的监测精度。 展开更多
关键词 网格化空气质量监测仪 改进鲸鱼算法 bp神经网络 电化学传感器 气体交叉干扰
在线阅读 下载PDF
基于粒子群算法与改进BP神经网络的水电机组轴心轨迹识别 被引量:28
9
作者 郭鹏程 罗兴锜 +2 位作者 王勇劲 白亮 李辉 《中国电机工程学报》 EI CSCD 北大核心 2011年第8期93-97,共5页
在水电机组状态检修系统中,轴心轨迹是判断机组状态的一个重要特征。该文提出边缘检测和矩特征提取相结合的方法,利用粒子群寻优算法来获取与待识别样本最接近的已知样本,应用改进的BP神经网络进行识别,将轴心轴迹的不变性矩作为神经网... 在水电机组状态检修系统中,轴心轨迹是判断机组状态的一个重要特征。该文提出边缘检测和矩特征提取相结合的方法,利用粒子群寻优算法来获取与待识别样本最接近的已知样本,应用改进的BP神经网络进行识别,将轴心轴迹的不变性矩作为神经网络的特征参数,对几种典型的轴心轨迹进行了辨识。某水电站机组试验表明该方法识别速度快、精度高,具有较高的实用价值。 展开更多
关键词 水电机组 轴心轨迹 边缘矩 粒子群寻优算法 改进bp神经网络
在线阅读 下载PDF
BP神经网络遥感水深反演算法的改进 被引量:27
10
作者 曹斌 邱振戈 +1 位作者 朱述龙 曹彬才 《测绘通报》 CSCD 北大核心 2017年第2期40-44,共5页
针对BP神经网络遥感水深反演算法(简称传统BP算法)的缺点,提出了改进型BP神经网络遥感水深反演算法(简称改进型BP算法),其基本原理是在模型训练过程中反复运用粒子群算法对BP神经网络的权值和阈值进行优化以弥补传统BP算法的不足。试验... 针对BP神经网络遥感水深反演算法(简称传统BP算法)的缺点,提出了改进型BP神经网络遥感水深反演算法(简称改进型BP算法),其基本原理是在模型训练过程中反复运用粒子群算法对BP神经网络的权值和阈值进行优化以弥补传统BP算法的不足。试验表明:改进型BP算法的训练迭代收敛速度明显快于传统BP算法,浅水区的水深反演精度优于传统BP算法,且学习算法对初始权值和阈值不敏感。 展开更多
关键词 遥感水深反演 传统bp算法 粒子群算法 改进bp算法 权值和阈值优化
在线阅读 下载PDF
基于改进型BP神经网络的氢原子钟钟差预测 被引量:18
11
作者 朱江淼 宋文峰 +1 位作者 高源 孙盼盼 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第2期454-460,共7页
原子钟的钟差预测是原子钟时标计算和原子钟驾驭的关键环节,良好的钟差预测可明显提高原子钟时标和原子钟驾驭的精度。为进一步提高氢原子钟的钟差预测精度,本文提出了一种改进型的BP神经网络算法,并用中国计量科学研究院守时实验室氢... 原子钟的钟差预测是原子钟时标计算和原子钟驾驭的关键环节,良好的钟差预测可明显提高原子钟时标和原子钟驾驭的精度。为进一步提高氢原子钟的钟差预测精度,本文提出了一种改进型的BP神经网络算法,并用中国计量科学研究院守时实验室氢原子钟组的实际数据进行了验证。验证结果表明,本文提出的改进型BP神经网络钟差预测算法与目前采用的线性回归钟差预测算法、SVM钟差预测算法相比,显著地提高了氢原子钟钟差预测精度。该钟差预测算法的提出对提高原子钟时标和驾驭精度有很好的推动作用。 展开更多
关键词 氢原子钟 钟差 改进bp神经网络 预测算法
在线阅读 下载PDF
基于改进粒子群算法的BP神经网络及其应用 被引量:31
12
作者 徐以山 曾碧 +1 位作者 尹秀文 卢博生 《计算机工程与应用》 CSCD 北大核心 2009年第35期233-235,共3页
目前BP神经网络是一种有效的预测方法,但在实际应用当中存在着一些自身的缺点,为此提出了一种基于改进粒子群算法的BP神经网络。通过动态调整粒子群算法中的惯性因子ω,有效地增强了算法对非线性问题的处理能力,同时提高了算法的收敛速... 目前BP神经网络是一种有效的预测方法,但在实际应用当中存在着一些自身的缺点,为此提出了一种基于改进粒子群算法的BP神经网络。通过动态调整粒子群算法中的惯性因子ω,有效地增强了算法对非线性问题的处理能力,同时提高了算法的收敛速度和搜索全局最优值的能力。建立改进后的BP网络模型,通过该模型和逐步回归方法对某市降水量进行实例分析。分析结果表明,改进后的BP网络模型具有较高的准备预报能力和稳定性。 展开更多
关键词 改进粒子群算法 bp神经网络 降水量预报
在线阅读 下载PDF
一种改进的前馈神经网络BP学习算法 被引量:14
13
作者 刘显德 崔浩然 +1 位作者 李盼池 许少华 《大庆石油学院学报》 CAS 北大核心 2003年第1期51-54,共4页
针对前馈神经网络收敛速度慢、易陷入局部极小问题 ,提出了一种改进的BP算法———变惯性因数和构造响应函数相结合的算法 .该算法在每一次校正连接权和阈值时 ,均按一定比例加上前一次学习时的校正量 ,同时构造出新响应函数 ,以提高网... 针对前馈神经网络收敛速度慢、易陷入局部极小问题 ,提出了一种改进的BP算法———变惯性因数和构造响应函数相结合的算法 .该算法在每一次校正连接权和阈值时 ,均按一定比例加上前一次学习时的校正量 ,同时构造出新响应函数 ,以提高网络收敛速度 .仿真实验证明了该算法的有效性 . 展开更多
关键词 改进 前馈神经网络 bp学习算法 变惯性因数 收敛性
在线阅读 下载PDF
改进BP算法在过程神经网络中的应用 被引量:18
14
作者 钟诗胜 朴树学 丁刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第6期840-842,共3页
过程神经网络是一种基于过程神经元的新型神经网络,其输入及权值皆为时序函数.针对基本BP算法的一些不足,将一种改进BP算法应用于前馈过程神经网络的训练之中,提高了网络的学习效率,扩展了过程神经网络的训练算法理论.在改进BP算法与网... 过程神经网络是一种基于过程神经元的新型神经网络,其输入及权值皆为时序函数.针对基本BP算法的一些不足,将一种改进BP算法应用于前馈过程神经网络的训练之中,提高了网络的学习效率,扩展了过程神经网络的训练算法理论.在改进BP算法与网络训练的结合过程中,权函数及输入函数皆被用同一正交基函数展开.最后基于改进BP算法将过程神经网络应用于了飞机发动机尾气温度指数的预测当中,验证了算法的有效性,同时也展示了过程神经网络广泛的应用前景. 展开更多
关键词 过程神经网络 改进bp算法 正交基函数 发动机尾气温度指数
在线阅读 下载PDF
基于L-M算法的BP神经网络预测短电弧加工表面质量模型 被引量:16
15
作者 李雪芝 周建平 +1 位作者 许燕 王博 《燕山大学学报》 CAS 北大核心 2016年第4期296-300,318,共6页
短电弧铣削加工技术属于特种加工行业中电加工的技术范畴,尤其适用于特硬、超强、高韧性等难加工材料的高效加工。但工件加工表面的技术特性(表面变质层、硬度、残余应力、表面层缺陷等)还有待于深入研究。为获得短电弧铣削加工良好的... 短电弧铣削加工技术属于特种加工行业中电加工的技术范畴,尤其适用于特硬、超强、高韧性等难加工材料的高效加工。但工件加工表面的技术特性(表面变质层、硬度、残余应力、表面层缺陷等)还有待于深入研究。为获得短电弧铣削加工良好的工艺效果,引入传统BP算法和Levenberg-Marquardt(简称L-M)算法,构建短电弧铣削加工表面质量模型。通过分析表面质量的影响因素,选取放电电压、频率、气压、脉冲时间为模型的输入,表面粗糙度、变质层厚度、工件材料去除率为输出,比较两种模型的预测精度。结果表明,基于L-M算法的BP神经网络对表面粗糙度、变质层厚度、材料去除率的平均预测误差分别为2.9%、9.4%、4.6%,低于传统的BP神经网络。相比传统的BP神经网络,改进的LM-BP神经网络模型提高了预测精度,实际工程中可用于优化工艺参数。 展开更多
关键词 短电弧铣削加工技术 bp神经网络 改进L-M算法
在线阅读 下载PDF
BP神经网络学习算法的改进及应用 被引量:19
16
作者 余妹兰 匡芳君 《沈阳农业大学学报》 CAS CSCD 北大核心 2011年第3期382-384,共3页
为了研究BP神经网络改进学习算法的适用情况,通过对实际的4个应用运用BP神经网络的多种改进的学习算法进行训练,比较得到各学习算法的适用范围,并能根据所研究问题类型、网络大小和要求精度等来选择合适的学习算法。结果表明:LM算法逼... 为了研究BP神经网络改进学习算法的适用情况,通过对实际的4个应用运用BP神经网络的多种改进的学习算法进行训练,比较得到各学习算法的适用范围,并能根据所研究问题类型、网络大小和要求精度等来选择合适的学习算法。结果表明:LM算法逼近效果好,但不适合大规模网络,RPROP算法应用于模式识别收敛速度最快,但不太适合函数逼近,SCG算法对较大网络规模的性能很好,且逼近效果好。 展开更多
关键词 bp神经网络 学习算法 改进算法 应用
在线阅读 下载PDF
基于GA-改进BP神经网络算法在大电网短路电流预测中的应用 被引量:10
17
作者 刘波 张焰 陈煜 《电工电能新技术》 CSCD 北大核心 2006年第4期43-46,共4页
详细分析了目前我国电网的短路电流情况以及发展趋势,提出了基于遗传算法(GA)和改进的BP神经网络算法的三相短路电流预测方法,以一个实际的大区域电网为例,对其进行基于潮流的三相短路电流计算,找出短路电流水平薄弱点,并对较薄弱点的... 详细分析了目前我国电网的短路电流情况以及发展趋势,提出了基于遗传算法(GA)和改进的BP神经网络算法的三相短路电流预测方法,以一个实际的大区域电网为例,对其进行基于潮流的三相短路电流计算,找出短路电流水平薄弱点,并对较薄弱点的短路电流水平进行预测,仿真计算说明了本文所提出的算法的可行性和有效性。 展开更多
关键词 三相短路电流 遗传算法 改进bp神经网络 预测
在线阅读 下载PDF
BP神经网络算法的改进及其在手写体汉字识别中的应用 被引量:5
18
作者 余华 曹亮 李启元 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第5期598-603,共6页
分析BP算法的基本原理,指出BP算法具有收敛速度慢、易陷入局部极小点等缺陷以及这些缺陷产生的根源.针对这些缺陷,通过在标准BP算法中引入变步长法、加动量项法等几种方法来优化BP算法.应用实例利用MATLAB软件对标准BP算法及其改进的算... 分析BP算法的基本原理,指出BP算法具有收敛速度慢、易陷入局部极小点等缺陷以及这些缺陷产生的根源.针对这些缺陷,通过在标准BP算法中引入变步长法、加动量项法等几种方法来优化BP算法.应用实例利用MATLAB软件对标准BP算法及其改进的算法进行语言编程、仿真.实验结果表明,这些方法有效地提高了BP算法的收敛性,避免陷入局部最小点.同时,将改进的BP神经网络算法应用于脱机手写体汉字识别系统的实现,实验表明系统较好地回避了汉字结构复杂、变形难以预测等问题,提高了识别率. 展开更多
关键词 bp神经网络 改进bp算法 脱机手写体汉字识别 学习率
在线阅读 下载PDF
BP小波神经网络自适应调节步长的改进算法 被引量:9
19
作者 何苗 刘希莲 +1 位作者 李金屏 杨波 《济南大学学报(自然科学版)》 CAS 2001年第4期315-318,共4页
在BP小波神经网络的训练过程中 ,自适应调节步长是对算法效率起重要作用的步骤之一。深入讨论了自适应调节步长的改进算法 ,从而得到更加方便合理的实时步长调整方法 ,进一步提高了局部搜索速度。多种情况下的仿真结果表明 ,该算法能够... 在BP小波神经网络的训练过程中 ,自适应调节步长是对算法效率起重要作用的步骤之一。深入讨论了自适应调节步长的改进算法 ,从而得到更加方便合理的实时步长调整方法 ,进一步提高了局部搜索速度。多种情况下的仿真结果表明 ,该算法能够提高局部搜索速度 ,具有较广泛的应用价值。 展开更多
关键词 bp小波神经网络 自适应调节步长 改进算法 梯度下降法
在线阅读 下载PDF
基于改进粒子群算法优化BP神经网络的废水处理软测量模型 被引量:23
20
作者 何丹 林来鹏 +3 位作者 李小勇 牛国强 易晓辉 黄明智 《华南师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期114-120,共7页
针对废水处理过程BP神经网络软测量模型受处理过程非线性特征影响,存在收敛速度慢、陷入局部极小点等问题,用改进的粒子群算法(PSO)优化BP神经网络,建立废水处理过程中出水化学需氧量(COD_(eff))与出水固体悬浮物(SSeff)的软测量模型(PS... 针对废水处理过程BP神经网络软测量模型受处理过程非线性特征影响,存在收敛速度慢、陷入局部极小点等问题,用改进的粒子群算法(PSO)优化BP神经网络,建立废水处理过程中出水化学需氧量(COD_(eff))与出水固体悬浮物(SSeff)的软测量模型(PSO-BP模型),并与基于遗传算法-BP神经网络算法的模型(GA-BP模型)及BP模型的预测效果进行对比.研究结果表明:采用PSO-BP模型预测COD_(eff)时,均方根误差(RMSE)、决定系数(R2)分别为3.9955、0.6401,而用于预测SSeff时,RMSE、R^(2)分别为0.6503、0.6811;相比BP模型和GA-BP模型,PSO-BP模型对COD_(eff)的预测性能分别提高了4.49%、0.44%,对SSeff的预测性能分别提高了40.11%、24.77%. 展开更多
关键词 废水处理 bp神经网络 改进的粒子群算法 软测量
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部