期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于长短期记忆神经网络和改进型K-means聚类算法的居民峰谷时段划分模型 被引量:11
1
作者 江兵 李国荣 +1 位作者 孙赵盟 庞宗强 《现代电力》 北大核心 2021年第6期620-627,I0004,I0005,共10页
为了解决传统峰谷时段划分方法因只选取单一典型日而无法在较长时间范围内适用的问题,提出一种基于长短期记忆神经网络(long short-term memory,LSTM)和改进型K-means聚类算法的居民峰谷时段划分模型:首先对居民用户一整年的负荷数据进... 为了解决传统峰谷时段划分方法因只选取单一典型日而无法在较长时间范围内适用的问题,提出一种基于长短期记忆神经网络(long short-term memory,LSTM)和改进型K-means聚类算法的居民峰谷时段划分模型:首先对居民用户一整年的负荷数据进行有效性检查和归一化处理,保证数据的准确可靠;接着将处理后的负荷数据按照不同季节及不同日期类型进行相应的分类,保证分类的数据具有较强的相似性;然后将数据按分类分别加入LSTM进行训练,获得用户在不同分类下的负荷特征数据;最后利用改进型K-means聚类算法对训练得到的负荷特征数据进行聚类分析,并依据相应的权重矩阵及划分原则获得最终的时段划分结果。结果表明,相对于经典及当地的时段划分,所提方法的时段划分轮廓系数平均值更大,方差更小,更能反映居民用户实际的用电特点及用电规律,有利于挖掘用户侧需求响应潜力,获得更优的削峰填谷效果。 展开更多
关键词 峰谷时段划分 长短期记忆神经网络 改进Kmeans算法 聚类分析 轮廓系数
在线阅读 下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:28
2
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
在线阅读 下载PDF
基于LSTM神经网络改进的路阻函数模型 被引量:8
3
作者 王飞 徐维祥 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第6期1065-1071,共7页
为了更加精确地计算道路的交通阻抗,对经典的BPR阻抗函数模型进行改进,建立长短期记忆(LSTM)神经网络预测改进函数中待定系数的正负,结合杭州市上塘高架至中河高架路段采集的交通数据进行验证.与传统BPR阻抗函数方法、经典的EMME/2锥形... 为了更加精确地计算道路的交通阻抗,对经典的BPR阻抗函数模型进行改进,建立长短期记忆(LSTM)神经网络预测改进函数中待定系数的正负,结合杭州市上塘高架至中河高架路段采集的交通数据进行验证.与传统BPR阻抗函数方法、经典的EMME/2锥形延误函数计算方法、BP神经网络预测方法、LSTM神经网络预测方法得出的结果进行对比分析,结果显示在数据精度满足要求的前提下,改进的模型具有更高的准确性和可靠性.说明使用改进模型计算得到的道路阻抗能够更为真实地反映道路的交通运行状况. 展开更多
关键词 城市交通 改进BPR函数 路阻函数 长短期记忆神经网络 行程时间计算
在线阅读 下载PDF
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测 被引量:8
4
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 光伏功率短期预测 灰色关联分析 改进鲸鱼优化算法 长短期记忆神经网络
在线阅读 下载PDF
基于ILSTM-AMSGD神经网络的时间序列预测方法 被引量:1
5
作者 杨爽 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2023年第10期1793-1800,共8页
针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AM... 针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AMSGD神经网络),并将其用于时间序列预测中。首先,通过简化结构方程中的递归项权值,减少网络中所需训练的参数。其次,设计一种AMSGD算法对神经网络结构参数进行学习。最后,通过2个基准数据集和1个实际数据集对ILSTM-AMSGD神经网络模型在时间序列预测中的准确性和运行效率进行实验验证。结果表明,递归项权值简化方法可以提高模型的泛化能力,同时AMSGD算法加快了模型的收敛速度。与其他模型相比,ILSTM-AMSGD神经网络模型实现了对时间序列更加高效、准确的预测。 展开更多
关键词 时间序列预测 改进型长短期记忆神经网络 权重精简 梯度下降算法 自适应 动量
在线阅读 下载PDF
改进粒子群算法优化CNN LSTM Attention模型在安全生产事故预测中的应用 被引量:1
6
作者 汪敏 田大平 《安全与环境学报》 北大核心 2025年第5期1829-1837,共9页
安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、... 安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络和注意力(Attention)机制相结合的新方法,建立了IPSO-CNN-LSTMAttention模型以提高对安全生产事故和死亡人数预测的准确性。首先,引入了一种改进的粒子群算法,建立动态非线性惯性权重来寻找模型中重要超参数的最优值,利用CNN从输入数据中提取退化特征,然后结合LSTM捕捉历史序列的时间相关性。最后,引入注意力机制,增强关键信息的影响,优化了整体预测模型。将该模型与CNN模型、CNN-LSTM-Attention模型和PSO-CNN-LSTM-Attention模型进行比较,结果表明,该模型能有效地捕捉数据的变化趋势,且模型的平均绝对百分比误差、均方根误差、平均绝对误差和决定系数均优于其他模型,证实IPSO-CNN-LSTM-Attention模型达到了很好的拟合优度和预测精度。分析了各变量对预测的贡献程度,研究结果可为安全生产预警和预防提供参考。 展开更多
关键词 安全工程 改进粒子群算法 卷积神经网络 长短期记忆 注意力机制 安全生产事故
在线阅读 下载PDF
基于改进蜣螂优化算法的短期风电功率预测
7
作者 蒋建东 张海峰 郭嘉琦 《郑州大学学报(工学版)》 北大核心 2025年第4期129-136,共8页
为了提高短期风电功率预测的准确度,建立了一种基于POTDBO-VMD-CNN-BiLSTM的短期风电功率预测模型。首先,采用融合Piecewise混沌映射、鱼鹰优化算法和自适应T分布扰动3种策略对蜣螂优化算法进行改进,以平衡蜣螂优化算法的全局探索和局... 为了提高短期风电功率预测的准确度,建立了一种基于POTDBO-VMD-CNN-BiLSTM的短期风电功率预测模型。首先,采用融合Piecewise混沌映射、鱼鹰优化算法和自适应T分布扰动3种策略对蜣螂优化算法进行改进,以平衡蜣螂优化算法的全局探索和局部开发能力并加快其收敛速度;其次,用改进的蜣螂优化算法(POTDBO)对变分模态分解(VMD)的分解数K和惩罚因子α进行寻优处理,提高VMD的分解效果,再用POTDBO-VMD模型对风电功率进行分解;最后,将分解的各频率分量以及残差分量分别输入到CNN-BiLSTM混合模型中预测,再将各频率分量以及残差分量的预测结果进行序列重构得到风电功率预测结果。通过新疆某风电场和吉林某风电场的实际数据对所提出模型进行实验,并和CNN-BiLSTM模型进行对比,结果显示:所提模型在决定系数R^(2)上分别增加了4.21%,7.69%,表现出更好的预测精度。 展开更多
关键词 风电功率预测 改进蜣螂优化算法 变分模态分解 卷积神经网络 双向长短期记忆神经网络
在线阅读 下载PDF
基于生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测 被引量:5
8
作者 曾进辉 苏旨音 +2 位作者 肖锋 刘颉 孙贤水 《电子测量技术》 北大核心 2024年第20期92-100,共9页
针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM... 针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM中。为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法。最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证。结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性。 展开更多
关键词 短期电力负荷预测 经验模态分解 长短期记忆神经网络 改进麻雀搜寻算法 生成对抗网络
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测 被引量:1
9
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于CNN-BiLSTM模型的平原型水库洪水预报研究 被引量:1
10
作者 赵忠峰 王雪妮 +3 位作者 晋华 郑婕 刘晓东 郭园 《水电能源科学》 北大核心 2025年第2期10-14,共5页
在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征... 在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征信息,并赋予不重要特征较低的权重,以便模型更加专注于对目标任务关键的特征信息。此外,利用BiLSTM处理流量序列中的长期依赖问题,通过其遗忘门有选择性地过滤掉权重较低的特征信息,实现对入库洪水过程的准确预测。最后,基于不同预见期评估所构建模型在安徽省合肥市大房郢水库入库洪水预报中的精准度。结果表明,4 h预见期下CNN-BiLSTM模型在入库洪水预报中具有更高的预报精度,相比BiLSTM模型和新安江(XAJ)模型,其确定性系数(D_(DC))分别提升9.9%、39.0%,均方根误差(R_(RMSE))和相对偏差(B_(BIAS))分别降低34.6%、17.1%和148.6%、20.6%。研究成果可为反推入库流量过程的平原型水库入库洪水预报提供新思路和技术支持。 展开更多
关键词 平原水库 卷积神经网络 双向长短期记忆神经网络 入库洪水预报
在线阅读 下载PDF
基于EEMD-IPSO-BiLSTM的闸基渗压预测模型研究
11
作者 张孟颖 王荣 +1 位作者 喻桂成 王少波 《水电能源科学》 北大核心 2025年第7期138-141,212,共5页
闸基渗流稳定是水闸安全评价的重要指标之一,构建高精度的闸基渗压预测模型对保障水闸安全运行具有重要意义。为此,以某水闸工程闸基渗压为研究对象,构建了一种基于集合经验模态分解(EEMD)与改进粒子群算法(IPSO)优化双向长短期记忆神... 闸基渗流稳定是水闸安全评价的重要指标之一,构建高精度的闸基渗压预测模型对保障水闸安全运行具有重要意义。为此,以某水闸工程闸基渗压为研究对象,构建了一种基于集合经验模态分解(EEMD)与改进粒子群算法(IPSO)优化双向长短期记忆神经网络(BiLSTM)相结合的闸基渗压预测模型。所建预测模型得到的三个渗压测点预测结果分布规律符合一般工程经验,并与另外三种常规预测模型进行对比。结果表明,所建预测模型得到的三个测点预测结果的均方根误差、平均绝对误差、平均绝对百分比误差均小于其他三个对比模型,与实测值更为贴合,具有更高的预测精度。研究结果可为闸基渗压精准预测提供参考。 展开更多
关键词 水闸 渗压预测 集合经验模态分解 改进粒子群算法 双向长短期记忆神经网络
在线阅读 下载PDF
基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型
12
作者 师国东 胡明茂 +3 位作者 宫爱红 龚青山 郭庆贺 谭浩 《计算机集成制造系统》 北大核心 2025年第9期3467-3484,共18页
为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用... 为有效预测车辆油耗,提高燃油经济性,促进节能减排,提出一种基于XGBoost-MSIWOA-LSTM的车辆油耗优化预测模型。该模型首先采用极端梯度提升树(XGBoost)算法提取车辆油耗特征,以优化模型的输入变量,提高模型的泛化性和鲁棒性。然后,利用多策略改进的鲸鱼优化算法(MSIWOA)对长短期记忆神经网络(LSTM)中的超参数进行自适应寻优,并将优化后的超参数代入LSTM中对车辆油耗进行建模预测。结合实际车辆油耗算例进行对比实验,结果表明,相对于其他对比模型,XGBoost-MSIWOA-LSTM预测模型预测精度更高,对降低车辆油耗具有一定的指导意义。 展开更多
关键词 油耗预测 极端梯度提升树 多策略改进的鲸鱼优化算法 长短期记忆神经网络 自适应寻优
在线阅读 下载PDF
基于KNN-IDBO-LSTM的光伏短期发电预测方法研究
13
作者 皮琳琳 田立国 《太阳能学报》 北大核心 2025年第5期320-330,共11页
提出一种基于K-近邻(KNN)数据预处理和改进蜣螂算法(IDBO)优化的长短期记忆神经网络(LSTM)光伏出力预测模型。首先,采用KNN补全缺失数据并校正异常数据,并提取易于训练的时序特征;然后,提出一种基于IDBO的LSTM模型参数优化方法,在原始DB... 提出一种基于K-近邻(KNN)数据预处理和改进蜣螂算法(IDBO)优化的长短期记忆神经网络(LSTM)光伏出力预测模型。首先,采用KNN补全缺失数据并校正异常数据,并提取易于训练的时序特征;然后,提出一种基于IDBO的LSTM模型参数优化方法,在原始DBO的基础上,采用种群均匀初始化策略,融合Levy飞行进行蜣螂位置迭代,引入种群密度概念动态调整种群数量,在保证全局搜索能力的同时大幅降低搜索时间;最后,基于澳大利亚某光伏阵列数据评估优化后模型预测性能。结果表明:在晴天、多云和雨天3种情况下,相比于KNN-LSTM,KNN-IDBO-LSTM的决定系数(R2)最高提升2.67%、均方根误差(RMSE)最高降低71.2%、平均绝对误差(MAE)最高降低79.9%、运行时间减少33.6%。 展开更多
关键词 光伏发电预测 长短期记忆神经网络 改进蜣螂优化算法 数据挖掘
在线阅读 下载PDF
INGOA结合LSTM的自来水混凝投药预测模型
14
作者 张庭源 张长胜 +3 位作者 张健忠 田海勇 毛辉 丁鑫 《兰州大学学报(自然科学版)》 北大核心 2025年第2期222-230,共9页
为解决自来水厂混凝投药量的控制问题,提出一种基于改进的北方苍鹰优化算法(INGOA)结合长短期记忆神经网络(LSTM)的混凝投药预测模型.为均衡NGOA的全局勘探和局部开发能力,根据种内竞争机制,加强算法的局部持续开发能力,引入柯西-高斯... 为解决自来水厂混凝投药量的控制问题,提出一种基于改进的北方苍鹰优化算法(INGOA)结合长短期记忆神经网络(LSTM)的混凝投药预测模型.为均衡NGOA的全局勘探和局部开发能力,根据种内竞争机制,加强算法的局部持续开发能力,引入柯西-高斯变异增加算法在局部最优值及其邻域附近的逃逸能力,提升算法的全局优化能力;利用基于Bernoulli混沌的自适应权重加快算法收敛速率.用Pearson相关系数法降低模型的输入维度,通过INGOA优化LSTM网络,得到最优参数组合策略,建立INGOA-LSTM非线性混凝投药量预测模型.对某自来水厂的数据进行训练和测试,结果表明,与LSTM及传统的预测模型相比,INGOA-LSTM模型效果最佳,在各项指标中均取得较优的性能,均方根误差为82.2μg/L,平均绝对误差为13.9μg/L,平均绝对百分比误差为0.29%. 展开更多
关键词 混凝投药预测 长短期记忆神经网络 改进的北方苍鹰优化算法 种内竞争机制 Bernoulli混沌权重
在线阅读 下载PDF
基于VMD-IBWO-BiLSTM的短期风电功率预测
15
作者 黄益 胡骅 魏云冰 《电网与清洁能源》 北大核心 2025年第5期148-158,共11页
准确预测风电功率对实现风电场稳定运行和电网优化调度具有重要意义。为了提高风电功率预测的稳定性和精准性,提出一种基于变分模态分解(variational modal decomposition,VMD)、融合Logistics混沌映射、折射反向学习策略的改进白鲸优... 准确预测风电功率对实现风电场稳定运行和电网优化调度具有重要意义。为了提高风电功率预测的稳定性和精准性,提出一种基于变分模态分解(variational modal decomposition,VMD)、融合Logistics混沌映射、折射反向学习策略的改进白鲸优化算法(improved beluga whale optimization,IBWO)和双向长短期记忆(bi-directional long short-term memory,BiLSTM)神经网络的组合模型。首先,利用模糊熵为适应度函数的北方苍鹰优化算法(northern goshawk optimization,NGO)优化VMD的核心参数,通过NGO-VMD对采集到的原始风电功率数据分解,得到模态分量。然后,利用改进白鲸优化算法IBWO对双向长短期记忆BiLSTM神经网络中的超参数进行寻优,再使用IBWO-BiLSTM模型对各模态分量预测。最后,将各模态分量的预测值叠加得到风电功率的预测值。实验表明,该组合模型较其他普通组合模型在预测精度上有较大提高。 展开更多
关键词 风电功率预测 变分模态分解 北方苍鹰优化算法 改进白鲸优化算法 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
基于IPSO-BiLSTM-AM模型的超短期风电功率预测方法 被引量:28
16
作者 高鹭 孔繁苗 +3 位作者 张飞 任晓颖 张晓琳 秦岭 《智慧电力》 北大核心 2022年第4期27-34,共8页
针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电... 针对现有模型预测准确性与稳定性较低的问题,提出一种以BiLSTM为基础的风电功率预测模型。BiLSTM可以很好的处理风电多变量之间的非线性关系,其次采用改进的PSO优化BiLSTM的超参数,并通过AM训练模型的权重。最后采用内蒙古自治区某风电场的历史数据进行提前0~15 min试验。结果表明,提出的IPSO-BiLSTM-AM模型具有较高的预测精度,可以为风电场电力调度与控制提供科学参考。 展开更多
关键词 风功率预测 改进的粒子群算法 双向长短期记忆神经网络 注意力机制
在线阅读 下载PDF
基于混合模型的超短期风速区间预测 被引量:15
17
作者 张金良 刘子毅 《电力系统保护与控制》 EI CSCD 北大核心 2022年第22期49-58,共10页
准确的风速预测能够促进大规模的风电并网,保证电力系统的安全稳定运行。针对传统点预测方法难以表征预测结果概率可信度问题,提出一种基于模糊信息粒化、改进长短期记忆网络与差分自回归移动平均模型的混合区间预测模型。首先,采用自... 准确的风速预测能够促进大规模的风电并网,保证电力系统的安全稳定运行。针对传统点预测方法难以表征预测结果概率可信度问题,提出一种基于模糊信息粒化、改进长短期记忆网络与差分自回归移动平均模型的混合区间预测模型。首先,采用自适应噪声的完全集合经验模态分解模型对原始风速数据进行分解,并依据模糊熵重构得到新序列。在此基础上,对每个序列依次进行模糊信息粒化,获得最大值、最小值及平均值。最后,利用改进长短期记忆网络模型预测高频序列,差分自回归移动平均模型预测低频序列与余项,并将所得上下界求和得到最终风速区间。算例分析表明,所提模型得出的风速预测区间能够准确覆盖实测风速,为电力系统调度提供更多有价值的决策信息。 展开更多
关键词 风速区间预测 模糊信息粒化 改进长短期记忆神经网络 差分自回归移动平均模 混合模
在线阅读 下载PDF
基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法 被引量:71
18
作者 赵雅雪 王旭 +2 位作者 蒋传文 张津珲 周子青 《中国电机工程学报》 EI CSCD 北大核心 2021年第1期135-146,共12页
为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方... 为准确预测电力市场中的短期电价,将最大信息系数(maximal information coefficient,MIC)相关性分析与改进多层级门控长短期记忆网络(multi-hierachy gated long shortterm memory,MHG-LSTM)相结合,提出一种新型短期电价预测方法。该方法首先对备选序列与预测电价序列做MIC相关性分析,在此基础上筛选备选序列并经小波变换合成神经网络输入序列,有效增加了输入中与预测电价相关的信息密度;其次,对传统LSTM进行创新性改进,提出用两级遗忘门和输入门替换传统的一级门控机构的MHG-LSTM模型,提高了神经网络选择和提取高频电价序列特征的能力。在PJM市场日前电价数据集上对所提方法进行仿真实验,实验结果表明,该方法的预测误差仅为4.506%,相比已有预测方法有效提升了短期电价的预测精度,且具有很强的普适性,可应用于电力市场短期电价预测,为市场参与者和监管机构提供有力决策依据。 展开更多
关键词 最大信息系数 相关性分析 长短期记忆(LSTM)神经网络 改进多层级门控LSTM 短期电价预测
在线阅读 下载PDF
基于改进的CNN-LSTM短期风功率预测的系统旋转备用经济性分析 被引量:19
19
作者 陈海鹏 周越豪 +3 位作者 王趁录 王俊祺 韩皓 吕鑫升 《高电压技术》 EI CAS CSCD 北大核心 2022年第2期439-446,共8页
为更准确地预测短期风功率,提出了一种新型短期风功率预测方法。首先采用Pearson相关系数法对风速、风向等影响因素序列与风功率序列进行相关性分析;其次,利用卷积神经网络(convolution neural network,CNN)对输入的时序序列进行特征提... 为更准确地预测短期风功率,提出了一种新型短期风功率预测方法。首先采用Pearson相关系数法对风速、风向等影响因素序列与风功率序列进行相关性分析;其次,利用卷积神经网络(convolution neural network,CNN)对输入的时序序列进行特征提取;然后在长短期记忆(long short-term memory,LSTM)网络基础上新增一个遗忘门和一个输入门,形成具有多级门控的LSTM网络,并且结合CNN建立能够提高输入序列特征提取能力和预测精度的改进的CNN-LSTM短期风功率预测模型;最后,以甘肃省某风电场实测数据进行仿真分析,并将预测结果作为制定调度计划的依据,分析不同预测结果对系统运行成本的影响。仿真结果表明:相比LSTM模型与CNN-LSTM模型,采用所提模型进行预测所得结果的均方根误差分别减少63.9%和47.9%,平均绝对误差分别减少70.4%和53.5%,可在一定程度上提高风功率预测精度。采用该模型的风功率预测结果可以有效减少系统预留的旋转备用容量,降低系统运行成本,能够为调度计划的制定提供有力依据。 展开更多
关键词 卷积神经网络 改进长短期记忆网络 风功率预测 相关性分析 旋转备用 经济性分析
在线阅读 下载PDF
基于MISSA-CNN-BiLSTM模型的尾矿坝位移预测 被引量:1
20
作者 刘迪 杨辉 +2 位作者 卢才武 阮顺领 江松 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期145-154,共10页
为应对尾矿坝位移预测所面临的复杂情况和精度要求,提出一种基于多算法耦合的尾矿坝位移动态预测模型。首先,基于时间序列分解模型将累计位移分为趋势项和周期项,利用高斯回归时间序列预测模型预测趋势项位移;然后,运用不同Copula函数... 为应对尾矿坝位移预测所面临的复杂情况和精度要求,提出一种基于多算法耦合的尾矿坝位移动态预测模型。首先,基于时间序列分解模型将累计位移分为趋势项和周期项,利用高斯回归时间序列预测模型预测趋势项位移;然后,运用不同Copula函数研究诱发因素与周期项位移的整体相关性,鉴于周期项位移影响因素多样性与强非线性的特点,采用多策略融合的改进麻雀搜索算法改进麻雀搜索算法(MISSA)-卷积神经网络(CNN)-双向长短期记忆(BiLSTM)模型预测周期项位移;最后,将高斯回归趋势项位移预测值和MISSA-CNN-BiLSTM周期项位移预测值叠加。结果表明:尾矿坝累积位移预测值与实测值基本一致,预测结果相关性系数R为0.996,均方根误差(RMSE)为0.13 mm,建立的MISSA-CNN-BiLSTM多算法耦合模型预测精度较高,且能较好地预测尾矿坝位移的阶跃型变化。 展开更多
关键词 改进麻雀搜索算法(MISSA) 卷积神经网络(CNN) 双向长短期记忆(BiLSTM) 尾矿坝 位移预测 深度学习模
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部