期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于改进RT-DETR的路面坑槽检测模型 被引量:3
1
作者 许小伟 陈燕玲 +2 位作者 占柳 漆庆华 邓明星 《武汉科技大学学报》 CAS 北大核心 2024年第6期457-467,共11页
路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更... 路面坑槽对驾驶的舒适性和安全性有很大影响。针对路面图像中坑槽尺寸小和特征信息匮乏导致检测精度低的问题,提出一种基于RT-DETR的路面坑槽检测模型Pavement Pothole-DETR(PP-DETR)。其主干网络使用SPDRSFE模块进行特征提取,可保留更多特征信息,提高小目标检测精度;引入渐进特征金字塔网络实现特征融合,避免多级传输造成的信息丢失,以解决坑槽特征信息主要集中在中、底特征层的问题;使用结构重参数化模块Conv3XCC3进行特征再提取,在提高网络表达能力的同时又不增加计算量。实验结果显示,相比原RT-DETR模型,PP-DETR的精确率与召回率分别提升了2.9和5.4个百分点,mAP达到76.9%。本文提出的改进方法有效提升了网络的特征提取和特征融合能力,在路面坑槽检测任务上的表现明显优于YOLO系列模型。 展开更多
关键词 目标检测 路面坑槽 改进RT-DETR 渐进特征金字塔网络 结构重参数化
在线阅读 下载PDF
面向焦虑改善的睡眠脑电信号深度学习分析模型研究
2
作者 黄辰 马耀龙 +5 位作者 张龑 王时绘 杨超 宋建华 陈侃松 杨伟平 《电子与信息学报》 北大核心 2025年第8期2935-2944,共10页
焦虑是一种常见的情绪障碍,其严重时会显著影响个体的身心健康。已有研究表明,睡眠与焦虑存在双向调控关系,高质量睡眠有助于缓解焦虑情绪。为提高在睡眠环境下对焦虑患者脑电信号的分析准确率,该文提出一种改进型特征金字塔网络(IFPN)... 焦虑是一种常见的情绪障碍,其严重时会显著影响个体的身心健康。已有研究表明,睡眠与焦虑存在双向调控关系,高质量睡眠有助于缓解焦虑情绪。为提高在睡眠环境下对焦虑患者脑电信号的分析准确率,该文提出一种改进型特征金字塔网络(IFPN)模型。在IFPN模型中,首先,对焦虑患者睡眠前后脑电信号进行预处理,采用脑电信号标准化和特征金字塔网络去噪,以统一脑电信号尺度并去除噪声。然后,将预处理后焦虑患者的睡眠脑电数据转换为脑熵地形图,以强化在睡眠环境下对焦虑改善的脑电信号分析能力,接着,利用改进型特征金字塔网络对脑熵地形图进行特征提取,生成特征脑地形图。最后,将特征脑地形图输入到ResNet-50进行脑电信号分析。本文在开源数据集上验证了IFPN模型的有效性。实验结果表明,在睡眠环境下,采用所提模型能够进一步提升针对焦虑脑电信号的分析能力和准确率,从而为分析睡眠对于焦虑的改善作用提供深入的理论和实验支撑。 展开更多
关键词 睡眠 焦虑 脑电图 改进型特征金字塔网络 奇异谱熵
在线阅读 下载PDF
基于改进型脉冲耦合神经网络的混沌相态分类方法 被引量:1
3
作者 蒋芳芳 王旭 杨丹 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期485-488,共4页
混沌相态分类是利用混沌系统检测微弱信号的关键步骤.提出一种基于改进型脉冲耦合神经网络的混沌相态分类方法.利用该网络模拟哺乳动物视觉皮层神经细胞活动的特点,提取混沌系统输出相态图的结构特征,并应用均值残差算法进行特征信息降... 混沌相态分类是利用混沌系统检测微弱信号的关键步骤.提出一种基于改进型脉冲耦合神经网络的混沌相态分类方法.利用该网络模拟哺乳动物视觉皮层神经细胞活动的特点,提取混沌系统输出相态图的结构特征,并应用均值残差算法进行特征信息降维,进而实现对系统混沌态与周期态的实时判别.以Lyapunov特性指数方法作为评价准则,分别使用正弦信号和标准ECG信号对所提方法进行检验,实验结果表明,所提方法可以快速、准确地对不同的混沌相态进行分类. 展开更多
关键词 混沌相态分类 改进脉冲耦合神经网络 微弱信号检测 特征提取 心电信号
在线阅读 下载PDF
基于改进神经网络的视频序列运动目标识别方法 被引量:2
4
作者 范建伟 李琳 靳志鑫 《现代电子技术》 北大核心 2024年第20期118-122,共5页
为改善运动目标检测效果,降低目标漏检率,提出一种基于改进神经网络的视频序列运动目标识别方法。构建改进YOLOv3的运动目标识别模型,以不同帧视频图像为模型输入,经过卷积层的初步特征提取后,输入到由5个残差模块组成的深层网络中。通... 为改善运动目标检测效果,降低目标漏检率,提出一种基于改进神经网络的视频序列运动目标识别方法。构建改进YOLOv3的运动目标识别模型,以不同帧视频图像为模型输入,经过卷积层的初步特征提取后,输入到由5个残差模块组成的深层网络中。通过以上采样方式构建特征金字塔,实现对运动目标四尺度特征的捕捉。在特征金字塔的每一层,应用K-means算法对运动目标真实框进行聚类,确保候选框尺寸和比例与真实运动目标的统计特性相匹配;再利用获得的候选框和分类器对特征图上每个位置进行目标检测,运用非极大值抑制技术剔除重叠框,将斥力损失函数引入到网络训练总损失之中,使预测框无限贴近运动目标真实框,实现对运动目标的精准识别。实验结果表明,所提方法具有显著的运动目标识别能力,当聚类数目为12时,运动目标识别的AUC、F1指标可达到0.92、0.90,且计算量较少。 展开更多
关键词 视频序列 运动目标识别 改进YOLOv3网络 特征金字塔 K-MEANS算法 候选框聚类
在线阅读 下载PDF
基于卷积神经网络的线结构光高精度三维测量方法
5
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差U特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
基于金字塔型残差神经网络的红外图像深度估计 被引量:5
6
作者 顾婷婷 赵海涛 孙韶媛 《红外技术》 CSCD 北大核心 2018年第5期417-423,共7页
对车载红外图像进行深度估计,可应用于车辆的夜间辅助驾驶系统(Driver Assistant Systems,DAS),本文提出了一种新型的神经网络结构来估计红外图像的深度。受景物分类思想的启发,将传统深度估计方法中的回归问题转化为分类问题。首先,对... 对车载红外图像进行深度估计,可应用于车辆的夜间辅助驾驶系统(Driver Assistant Systems,DAS),本文提出了一种新型的神经网络结构来估计红外图像的深度。受景物分类思想的启发,将传统深度估计方法中的回归问题转化为分类问题。首先,对红外图像进行归一化预处理,并将深度图置于自然对数空间对距离进行远近分类。其次,设计了一种新型的金字塔输入残差神经网络(Pyramid Residual Neural Networks,PRN),将红外图像以金字塔型结构作为网络输入,网络结构分为粗略特征提取和精细特征提取两部分。最后,将全连接层改为全卷积层,大大减少了网络中的参数个数,降低计算复杂度。金字塔型结构的输入使得网络能够多尺度提取特征,这使得估计出的深度图场景中的对象轮廓比同一网络单一红外图像输入估计出的景物轮廓更清晰。此外,通过计算错误和准确性评价指标,证明本文的提出方法能够很好地估计红外图像的深度,对比实验验证了本文方法更具优势。 展开更多
关键词 深度估计 车载红外图像 金字塔输入 残差网络 多尺度特征
在线阅读 下载PDF
一种改进SegNet网络的路面裂缝分割算法 被引量:1
7
作者 廖宁生 杨雲翔 +1 位作者 朱秘 彭波 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期142-148,共7页
路面裂缝是威胁公路安全运行的常见潜在隐患,经典路面裂缝分割算法存在不同程度的裂缝断裂、薄细裂缝边缘识别不佳等问题。针对上述问题,提出一种Crack SegFormer路面裂缝分割算法,主要由基于裂缝定位注意力的编码器、多层特征金字塔以... 路面裂缝是威胁公路安全运行的常见潜在隐患,经典路面裂缝分割算法存在不同程度的裂缝断裂、薄细裂缝边缘识别不佳等问题。针对上述问题,提出一种Crack SegFormer路面裂缝分割算法,主要由基于裂缝定位注意力的编码器、多层特征金字塔以及基于裂缝锐化注意力的解码器三部分组成。利用Crack500、Crack200、DeepCrack、CFD 4个公开数据,对CrackSegFormer模型分割裂缝的有效性进行了验证,结果显示所提出的CrackSegFormer模型能够抑制非裂缝特征、保留细微和末梢裂缝特征。相对于经典SegNet网络,所提出模型的准确度、召回率和F1-score三类评价指标分别提升了1.14%,3.61%和4.26%。 展开更多
关键词 路面裂缝分割 改进SegNet网络 注意力机制 多层特征金字塔
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
8
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
一个基于自组织特征映射网络的混合神经网络结构(英文) 被引量:4
9
作者 戴群 陈松灿 王喆 《软件学报》 EI CSCD 北大核心 2009年第5期1329-1336,共8页
将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严... 将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严重缺陷.提出此集成型网络的动机是,利用BP-SOM良好的知识解释能力和ICBP网络良好的推广性和自适应性构造一个ICBP-SOM模型,它具有良好的知识表示能力和极具竞争力的推广性能.在6个基准数据集上的实验结果验证了这一集成型网络的可行性和有效性. 展开更多
关键词 神经网络 反向传播网络 改进的圆反向传播网络 自组织特征映射 BP—SOM 分类
在线阅读 下载PDF
基于改进YOLOv5的O型密封圈缺陷检测方法 被引量:6
10
作者 朱文博 夏林聪 +2 位作者 陈龙 吴晨睿 陈红光 《上海理工大学学报》 CAS CSCD 北大核心 2022年第5期440-448,共9页
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少... 针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。 展开更多
关键词 YOLOv5 O密封圈 缺陷检测 卷积注意力机制 双向特征金字塔网络
在线阅读 下载PDF
基于改进YOLOv5s的田间移动障碍物检测 被引量:4
11
作者 侯艳林 艾尔肯·亥木都拉 李贺南 《现代电子技术》 北大核心 2024年第6期171-178,共8页
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和... 为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动端设备。 展开更多
关键词 移动障碍物 YOLOv5s 无人农机 目标检测 CBAM注意力机制 双向特征金字塔网络(BiFPN)
在线阅读 下载PDF
新型融合方法的医学图像预处理和分类 被引量:4
12
作者 刘玉成 王传生 +2 位作者 杨露鑫 杨晶 理查德·丁 《计算机工程与设计》 北大核心 2020年第1期169-175,共7页
为在尿沉渣的复杂环境中提取适合神经网络识别的图像信息,满足医学检测和分类的准确性要求,提出一种改进型卷积网络(improved convolution neural networks,ICNNs)的图像融合预处理方法。经过融合与重构,得到符合R、G、B要求的高质量射... 为在尿沉渣的复杂环境中提取适合神经网络识别的图像信息,满足医学检测和分类的准确性要求,提出一种改进型卷积网络(improved convolution neural networks,ICNNs)的图像融合预处理方法。经过融合与重构,得到符合R、G、B要求的高质量射频多光谱信息图像。对比其它预处理方法与神经网络集成的识别分类数据可知,多种尿沉渣成分的识别率得到了显著提高,由聚堆问题引起的识别分类干扰持续下降。ICNNs与BPNNs(back propagation neural networks)集成方法的仿真实验结果表明了ICNNs图像融合预处理方法的先进性,以及ICNNs与BP识别神经网络集成的有效性和鲁棒性。 展开更多
关键词 改进卷积网络 反传神经网络 最优支撑值 特征提取 稀疏矩阵 函数重构
在线阅读 下载PDF
基于改进Faster R-CNN的棉布包装缺陷检测的方法研究 被引量:7
13
作者 曾秀云 陆华才 吕禾丰 《电子测量与仪器学报》 CSCD 北大核心 2022年第4期179-186,共8页
由于传统检测算法对棉布包装缺陷检测不够准确、对小目标缺陷识别率不够高,所以提出改进的Faster R-CNN深度学习网络,对棉布包装存在的破损、污渍、孔洞、杂质、线头等5种缺陷进行检测。通过对图像进行预处理实现图像增强,然后改进Faste... 由于传统检测算法对棉布包装缺陷检测不够准确、对小目标缺陷识别率不够高,所以提出改进的Faster R-CNN深度学习网络,对棉布包装存在的破损、污渍、孔洞、杂质、线头等5种缺陷进行检测。通过对图像进行预处理实现图像增强,然后改进Faster R-CNN中的RPN和ROI结构,为加强小目标缺陷的检测能力,在主干网络中融合特征金字塔网络结构,最后对ROI进行双线性插值以解决多次量化引起的像素偏差问题。实验表明,改进后的网络对棉布包装表面缺陷检测的平均精度均值mAP为91.34%,与传统算法相比,mAP值提高了9.08%。 展开更多
关键词 缺陷检测 Faster R-CNN 特征金字塔网络 双线性插值改进
在线阅读 下载PDF
多分辨率融合输入的U型视网膜血管分割算法 被引量:7
14
作者 梁礼明 詹涛 +2 位作者 雷坤 冯骏 谭卢敏 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1795-1806,共12页
针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代... 针对视网膜血管拓扑结构不规则、形态复杂和尺度变化多样的特点,该文提出一种多分辨率融合输入的U型网络(MFIU-Net),旨在实现视网膜血管精准分割。设计以多分辨率融合输入为主干的粗略分割网络,生成高分辨率特征。采用改进的ResNeSt代替传统卷积,优化血管分割边界特征;将并行空间激活模块嵌入其中,捕获更多的语义和空间信息。构架另一U型精细分割网络,提高模型的微观表示和识别能力。一是底层采用多尺度密集特征金字塔模块提取血管的多尺度特征信息。二是利用特征自适应模块增强粗、细网络之间的特征融合,抑制不相关的背景噪声。三是设计面向细节的双重损失函数融合,以引导网络专注于学习特征。在眼底数据用于血管提取的数字视网膜图像(DRIVE)、视网膜结构分析(STARE)和儿童心脏与健康研究(CHASE_DB1)上进行实验,其准确率分别为97.00%,97.47%和97.48%,灵敏度分别为82.73%,82.86%和83.24%,曲线下的面积(AUC)值分别为98.74%,98.90%和98.93%。其模型整体性能优于现有算法。 展开更多
关键词 视网膜血管分割 U网络 并行空间激活模块 多尺度密集特征金字塔模块 双重损失函数融合
在线阅读 下载PDF
基于跨模态注意力融合的煤炭异物检测方法 被引量:5
15
作者 曹现刚 李虎 +3 位作者 王鹏 吴旭东 向敬芳 丁文韬 《工矿自动化》 CSCD 北大核心 2024年第1期57-65,共9页
为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采... 为解决原煤智能化洗选过程中煤流中夹杂的异物对比度低、相互遮挡导致异物图像检测时特征提取不充分的问题,提出了一种基于跨模态注意力融合的煤炭异物检测方法。通过引入Depth图像构建RGB图像与Depth图像的双特征金字塔网络(DFPN),采用浅层的特征提取策略提取Depth图像的低级特征,用深度边缘与深度纹理等基础特征辅助RGB图像深层特征,以有效获得2种特征的互补信息,从而丰富异物特征的空间与边缘信息,提高检测精度;构建了基于坐标注意力与改进空间注意力的跨模态注意力融合模块(CAFM),以协同优化并融合RGB特征与Depth特征,增强网络对特征图中被遮挡异物可见部分的关注度,提高被遮挡异物检测精度;使用区域卷积神经网络(R-CNN)输出煤炭异物的分类、回归与分割结果。实验结果表明:在检测精度方面,该方法的AP相较两阶段模型中较优的Mask transfiner高3.9%;在检测效率方面,该方法的单帧检测时间为110.5 ms,能够满足异物检测实时性需求。基于跨模态注意力融合的煤炭异物检测方法能够以空间特征辅助色彩、形状与纹理等特征,准确识别煤炭异物之间及煤炭异物与输送带之间的差异,从而有效提高对复杂特征异物的检测精度,减少误检、漏检现象,实现复杂特征下煤炭异物的精确检测与像素级分割。 展开更多
关键词 煤炭异物检测 实例分割 特征金字塔网络 跨模态注意力融合 Depth图像 坐标注意力 改进空间注意力
在线阅读 下载PDF
面向多复杂场景环境的敞车车号辨识研究
16
作者 薛峰 于国丞 +3 位作者 李世杰 凌烈鹏 张峰峰 陈峰炜 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1162-1169,共8页
针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深... 针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深度可分离卷积的敞车车号特征提取网络设计。提出基于改进卷积循环神经网络的车号定位识别模型,主要针对识别网络模型结构进行设计。通过不同环境下采集的敞车车厢图片对本文提出的方法进行验证。结果表明:本文提出的车号定位方法的准确率为0.94,车号识别的准确率为0.97。 展开更多
关键词 车号定位 深度可分离卷积 特征提取 改进卷积循环神经网络 特征金字塔 字符识别 铁路货运 深度学习
在线阅读 下载PDF
基于自适应全局定位算法的带钢表面缺陷检测
17
作者 王延舒 余建波 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1550-1564,共15页
针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResN... 针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResNet)与特征金字塔网络(Feature pyramid network,FPN)集成的特征提取结构,减少缺陷语义信息在层级传递间的消失;其次,提出基于TPE(Tree-structure Parzen estimation)的自适应树型候选框提取网络(Adaptive treestructure region proposal extraction network,AT-RPN),无需先验知识的积累,避免了人为调参的训练模式;最后,引入全局定位回归算法,以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际应用的热轧带钢表面缺陷的算法.实验结果表明,AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8帧/s,平均精度达到79.90%,优于目前其他深度学习带钢表面缺陷检测算法.另外,该算法还具备较强的泛化能力. 展开更多
关键词 表面缺陷检测 深度学习 特征金字塔网络 自适应树候选框提取 全局定位
在线阅读 下载PDF
一种快速高效的人脸检测方法 被引量:7
18
作者 黄兴 王小涛 陆丽华 《计算机工程与应用》 CSCD 2013年第3期198-201,242,共5页
介绍了一种建立在改进型Adaboost算法基础上的人脸检测方法,整个方法分为训练和检测两个阶段。训练阶段包含提取类Haar_Like矩形特征、利用改进型Adaboost算法生成强分类器、级联强分类器生成人脸检测器三步。检测阶段,采用金字塔式的... 介绍了一种建立在改进型Adaboost算法基础上的人脸检测方法,整个方法分为训练和检测两个阶段。训练阶段包含提取类Haar_Like矩形特征、利用改进型Adaboost算法生成强分类器、级联强分类器生成人脸检测器三步。检测阶段,采用金字塔式的穷举搜索法将对待检测图像进行人脸检测。为了解决传统Adaboost算法在训练过程中可能出现退化现象的问题,在Adaboost每轮训练中,定义一个阈值HWt,结合样本是否被错误分类以及当前权值是否大于HWt来给样本更新权值,该方法可以避免训练中可能出现的权重分布严重扭曲的退化现象,提高检测效率。经过编程实践,结果证明该方法检测效率高、检测精度较好。 展开更多
关键词 人脸检测 改进Adaboost算法 权重分布 矩形特征 金字塔式穷举搜索法 积分图 分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部