期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法 被引量:20
1
作者 周陈林 董绍江 +4 位作者 李玲 汤宝平 贺坤 穆书锋 张潇汀 《振动工程学报》 EI CSCD 北大核心 2020年第4期854-860,共7页
针对现有滚动轴承故障诊断模型中人工选取特征的不确定性,诊断模型不具有针对性的难题,提出一种针对滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法。首先,该方法针对滚动轴承故障的多状态特征信息,提出一种改进型卷积神经网... 针对现有滚动轴承故障诊断模型中人工选取特征的不确定性,诊断模型不具有针对性的难题,提出一种针对滚动轴承多状态特征信息的改进型卷积神经网络故障诊断方法。首先,该方法针对滚动轴承故障的多状态特征信息,提出一种改进型卷积神经网络设计基本准则(BPDICNN);再次,利用提出的BPDICNN设计了卷积神经网络模型,直接在滚动轴承原始振动信号上进行“端到端”的学习训练,从原始信号中挖掘出包括故障类型、故障位置、故障损伤程度、故障检测时负载状态等多个特征;最后,利用实验数据进行了验证,实现了30个滚动轴承故障状态的有效诊断,准确率为100%,实验结果验证了方法的有效性。 展开更多
关键词 故障诊断 滚动轴承 改进型卷积神经网络 多状态
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部