期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
基于遗传算法改进的少数类样本合成过采样技术的非平衡数据集分类算法 被引量:19
1
作者 霍玉丹 谷琼 +1 位作者 蔡之华 袁磊 《计算机应用》 CSCD 北大核心 2015年第1期121-124,139,共5页
针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍... 针对少数类样本合成过采样技术(SMOTE)在处理非平衡数据集分类问题时,为少数类的不同样本设置相同的采样倍率,存在一定的盲目性的问题,提出了一种基于遗传算法(GA)改进的SMOTE方法——GASMOTE。首先,为少数类的不同样本设置不同的采样倍率,并将这些采样倍率取值的组合编码为种群中的个体;然后,循环使用GA的选择、交叉、变异等算子对种群进行优化,在达到停机条件时获得采样倍率取值的最优组合;最后,根据找到的最优组合对非平衡数据集进行SMOTE采样。在10个典型的非平衡数据集上进行的实验结果表明:与SMOTE算法相比,GASMOTE在F-measure值上提高了5.9个百分点,在G-mean值上提高了1.6个百分点;与Borderline-SMOTE算法相比,GASMOTE在F-measure值上提高了3.7个百分点,在G-mean值上提高了2.3个百分点。该方法可作为一种新的解决非平衡数据集分类问题的过采样技术。 展开更多
关键词 非平衡数据集 分类 少数类样本合成过采样技术 采样倍率 遗传算法
在线阅读 下载PDF
面向不平衡图像数据的对抗自编码器过采样算法 被引量:2
2
作者 职为梅 常智 +1 位作者 卢俊华 耿正乾 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4208-4218,共11页
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量... 许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络(BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。 展开更多
关键词 不平衡图像数据 过采样 生成对抗网络 对抗自编码器 合成少数过采样技术
在线阅读 下载PDF
针对不平衡数据的过采样和随机森林改进算法 被引量:39
3
作者 张家伟 郭林明 杨晓梅 《计算机工程与应用》 CSCD 北大核心 2020年第11期39-45,共7页
针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampl... 针对数据不平衡带来的少数类样本识别率低的问题,提出通过加权策略对过采样和随机森林进行改进的算法,从数据预处理和算法两个方面降低数据不平衡对分类器的影响。数据预处理阶段应用合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)降低数据不平衡度,每个少数类样本根据其相对于剩余样本的欧氏距离分配权重,使每个样本合成不同数量的新样本。算法改进阶段利用Kappa系数评价随机森林中决策树训练后的分类效果,并赋予每棵树相应的权重,使分类能力更好的树在投票阶段有更大的投票权,提高随机森林算法对不平衡数据的整体分类性能。在KEEL数据集上的实验表明,与未改进算法相比,改进后的算法对少数类样本分类准确率和整体样本分类性能有所提升。 展开更多
关键词 数据不平衡 合成少数过采样技术(SMOTE) Kappa系数 随机森林
在线阅读 下载PDF
基于改进SMOTE不均衡样本处理和IHPO-DBN的变压器故障诊断方法研究 被引量:3
4
作者 周萱 吴伟丽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期21-30,共10页
针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分... 针对由于变压器故障样本不均衡和故障模型陷入局部最优而导致的分类准确率低的问题,提出了基于改进的合成少数类过采样技术和优化深度置信网络(deep belief network, DBN)的变压器故障诊断方法。首先采用聚类融合的K-means算法,通过分簇和匹配的方式筛选出不稳定的少数类样本用以改进中心点合成少数类过采样技术(center point synthetic minority oversampling technique, CP-SMOTE)算法,并对少数类样本进行扩增,解决了变压器故障数据分布不均衡的问题。其次,通过加入随机逆向学习和自适应惯性权重技术对猎食者优化算法进行改进,并用改进后的算法对DBN的内部参数进行优化调整,提高了模型精度。最后,将不同数据预处理情况下以及不同数据规模下的变压器故障模型进行仿真对比。结果表明,经过数据预处理和模型优化后的变压器故障识别准确率能够提高到98%,有效地解决了故障数据不平衡导致的分类精度低的问题。 展开更多
关键词 变压器故障诊断 不均衡样本 K-MEANS聚类 改进合成少数过采样 改进猎食者优化
在线阅读 下载PDF
样本不平衡条件下煤矿突水水源识别——以谢桥煤矿为例
5
作者 王彦彬 闫晓杉 《安全与环境学报》 北大核心 2025年第7期2553-2561,共9页
为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条... 为了有效识别煤矿突水水源,以保障煤矿安全生产,使用合成少数类过采样技术(Synthetic Minority Oversampling Technique, SMOTE)补充少数类样本,继而采用支持向量机(Support Vector Machine, SVM)模型对突水水源进行识别。试验选取96条谢桥煤矿水化学数据进行分析,首先对样本数据进行标准化处理和主成分分析(Principal Component Analysis, PCA),将数据集划分为训练集和测试集,对训练集中少数类样本采用SMOTE法生成新的样本,然后采用改进混沌哈里斯鹰优化(Chaos Harris Hawks Optimization, CHHO)算法结合十折交叉验证优化支持向量机惩罚因子C和径向基函数(Radial Basis Function, RBF)核的参数γ,根据优化结果建立突水水源识别模型,对测试集中突水水源进行识别。将该方法与朴素贝叶斯、随机森林所得结果进行比较,结果显示,采用本方法对测试集识别结果准确性优于其他两种方法,表明该方法在突水水源识别上具有良好的实用性和有效性。 展开更多
关键词 安全工程 突水水源识别 主成分分析 合成少数过采样技术 混沌哈里斯鹰优化算法 支持向量机
在线阅读 下载PDF
基于改进SMOTE的非平衡数据集分类研究 被引量:19
6
作者 王超学 潘正茂 +2 位作者 董丽丽 马春森 张星 《计算机工程与应用》 CSCD 2013年第2期184-187,245,共5页
针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少... 针对SMOTE(Synthetic Minority Over-sampling Technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K-Nearest Neighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。 展开更多
关键词 非平衡数据集 分类 支持度 轮盘赌选择 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
7
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据集 分类 遗传算子 少数类样本合成过采样技术(SMOTE) SYNTHETIC MINORITY OVER-SAMPLING technique (SMOTE)
在线阅读 下载PDF
构造性覆盖算法的SMOTE过采样方法 被引量:10
8
作者 严远亭 朱原玮 +2 位作者 吴增宝 张以文 张燕平 《计算机科学与探索》 CSCD 北大核心 2020年第6期975-984,共10页
如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数... 如何提高对少数类样本的识别能力是不平衡数据分类中的一个研究热点。合成少数类过采样技术(SMOTE)是解决此类问题的代表性方法之一。近年来,不少研究者对SMOTE做出了一些改进,较好地提高了该方法的性能。然而,如何有效地选取典型少数类样本进行过采样仍然是一个值得研究的问题。此外,被孤立的少数样本在提高模型性能方面的潜在能力也没有得到足够的重视。针对上述问题,提出了基于构造性覆盖算法(CCA)的过采样技术CMOTE。CMOTE提供了两种不同策略下选择关键样本的方法:基于覆盖内样本个数的方法与基于覆盖密度的方法。在12个典型的不平衡数据集上验证CMOTE算法的性能。实验结果表明,CMOTE算法在总体上优于对比方法,并且通过强化关键样本对模型性能的影响增强了模型的泛化能力。 展开更多
关键词 不平衡数据 过采样技术 合成少数过采样技术(SMOTE) 构造性覆盖算法(CCA)
在线阅读 下载PDF
融合nmODE的术后肺部并发症预测模型
9
作者 熊立鹏 徐修远 +2 位作者 牛颢 陈楠 章毅 《智能系统学报》 北大核心 2025年第1期198-205,共8页
为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码... 为了准确预测病人肺部手术后并发症的发生,提出了一种融合神经记忆常微分方程(neural memory ordinary differential equation,nmODE)的并发症预测模型。首先,利用极限梯度提升(extreme gradient boosting,XGBoost)树结构对数据进行编码,并提取其特征重要性。然后,使用长短时记忆神经网络对数据的相关特征依赖性进行分析,并提取处理后的特征。最后,利用nmODE的记忆和学习能力,对提取的特征进行深入分析,并得出最终的预测结果。通过实验评估,在肺部术后并发症数据集中,证明了提出模型的效果优于现有模型,同时可以为预测肺部手术后并发症的发生提供更准确的结果。 展开更多
关键词 疾病预测 异构表格数据 神经记忆常微分方程 极限梯度提升 长短时记忆神经网络 合成少数过采样技术 类别不平衡 病人预后
在线阅读 下载PDF
非平衡技术在高速网络入侵检测中的应用 被引量:3
10
作者 赵月爱 陈俊杰 穆晓芳 《计算机应用》 CSCD 北大核心 2009年第7期1806-1808,1812,共4页
针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的... 针对现有的高速网络入侵检测系统丢包率高、检测速度慢以及检测算法对不同类型攻击检测的非平衡性等问题,提出了采用两阶段的负载均衡策略的检测模型。在线检测阶段对网络数据包按协议类型进行分流的检测,离线建模阶段对不同协议类型的数据进行学习建模,供在线部分检测。在讨论非平衡数据处理的各种采样技术基础上,采用改进后的过抽样少数样本合成过采样技术(SMOTE)对网络数据进行预处理,采用AdaBoost、随机森林算法等进行分类。另外对特征选取等方面进行了实验,结果表明SMOTE过抽样可提高各少数类的检测,随机森林算法分类效果好而且建模所用的时间稳定。 展开更多
关键词 高速网络 入侵检测 非平衡数据 少数样本合成过采样技术 集成学习 ADABOOST算法 随机森林算法
在线阅读 下载PDF
利用采样安全系数的多类不平衡过采样算法 被引量:4
11
作者 董明刚 刘明 敬超 《计算机科学与探索》 CSCD 北大核心 2020年第10期1776-1786,共11页
传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那... 传统的过采样算法在处理多类不平衡问题时容易出现过度泛化和类别重叠,从而降低了分类性能。为了提高多类不平衡学习性能,提出了一种利用采样安全系数的多类不平衡过采样(SSCMIO)算法。首先为了防止过度泛化,采用近邻采样安全系数为那些会造成过度泛化的邻域分配一个较小的权重。然后考虑到样本点的全局特性,采用反向近邻采样安全系数防止新合成的样本点侵入到其他类别区域,减轻类别之间的重叠问题。最后以C4.5决策树作为基分类器,将SSCMIO算法与7种典型的过采样算法进行了对比实验。在16个公开的真实数据集上,SSCMIO算法在准确率、召回率、F-measure、MG、MAUC这5个指标上均能取得11个以上的最优值,在5个指标上最大提升分别是0.4818、0.3053、0.3420、0.2664、0.1307。实验结果表明SSCMIO算法相比其他7种算法可以取得更好的分类性能。 展开更多
关键词 采样安全系数 过采样 合成少数技术 多类不平衡问题
在线阅读 下载PDF
不平衡样本下基于变异麻雀搜索算法和改进SMOTE的变压器故障诊断方法 被引量:10
12
作者 朱莉 汪小豪 +2 位作者 李豪 姜成龙 曹明海 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期4993-5001,共9页
针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved syntheti... 针对麻雀搜索算法同质化严重和变压器故障样本不平衡导致分类效果不佳的问题,提出了变异麻雀搜索算法优化支持向量机(variation sparrow search algorithm-support vector machine,VSSA-SVM)和改进合成少数过采样技术(improved synthetic minority over-sampling technique,ISMOTE)的变压器故障诊断方法。首先使用Tomek Link对数据集进行去噪,引入中心偏移权重(center offset weight,COW)改进SMOTE算法对不平衡数据集的少数类样本进行合成,得到平衡化处理后的变压器故障数据集。然后,基于变异的思想,构建VSSA-SVM的变压器故障诊断模型。最后,在413例油浸变压器的油中溶解气体分析(dissoived gas anaiysis,DGA)数据上,使用PSO-SVM、SSA-SVM和VSSA-SVM模型进行诊断,诊断结果分别为81.45%、88.71%和96.77%,同时与SMOTE-NND、SVM SMOTE、Borderline-SMOTE、SMOTE以及原始数据集方法相比,ISMOTE分别提升了3.22%、4.03%、6.45%、7.52%、11.29%。结果表明,该文所提方法能准确判别变压器的故障状态,有效解决故障数据不平衡导致分类精度低的问题,具有一定的工程实用价值。 展开更多
关键词 变压器 故障诊断 不平衡样本 改进合成少数过采样 变异麻雀搜索算法
在线阅读 下载PDF
一种基于SVM的非均衡数据集过采样方法 被引量:17
13
作者 张忠林 冯宜邦 赵中恺 《计算机工程与应用》 CSCD 北大核心 2020年第23期220-228,共9页
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on... 针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。 展开更多
关键词 不平衡数据 支持向量机(SVM) 过采样 样本权重 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
基于改进深度降噪自编码网络的电网气象防灾方法 被引量:18
14
作者 丛伟 胡亮亮 +3 位作者 孙世军 韩洪 孙梦晨 王安宁 《电力系统自动化》 EI CSCD 北大核心 2019年第2期42-49,共8页
电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降... 电网运维数据表明电网故障的主要原因已由电气设备制造工艺水平、现场运维水平等因素转向雷电、山火、大风、冰灾等自然气象因素,电网防灾减灾也应重点关注气象致灾。针对气象与电网故障之间的关联特点和规律,提出了一种基于改进深度降噪自编码(SDAE)网络的电网气象防灾方法。以气象历史数据和电网运维检修数据为基础,利用合成少数类样本过采样技术(SMOTE)降低原始数据集的不平衡度,自编码网络通过非监督自学习和有监督微调完成气象信息特征的提取和气象信息与电网故障映射关系的建立,并通过融入稀疏项限制和加噪编码来改善网络的鲁棒性。算例分析表明,所提出的基于SMOTE和SDAE的网络电网气象防灾方法,能够准确、全面地建立气象信息与电网故障之间的关联映射关系,能够对给定的气象条件是否会导致发生电网灾害事故进行准确的预判。 展开更多
关键词 气象信息 电网防灾减灾 电网故障 合成少数类样本过采样技术 深度降噪自编码 深度学习
在线阅读 下载PDF
面向不平衡数据的特征子空间增强的异质集成学习
15
作者 陈丽芳 白云 +1 位作者 施永辉 代琪 《计算机工程与科学》 北大核心 2025年第5期940-950,共11页
对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择... 对于不平衡数据,传统分类器趋向于保证多数类的准确率,而牺牲少数类的准确率,造成算法的整体性能下降。针对这一问题,提出一种面向不平衡数据的特征子空间增强的异质集成学习算法HEL-FSA。首先利用XGBoost算法学习特征的重要性,并选择重要的特征,形成数据集的特征子空间;其次使用SMOTE算法在特征子空间中生成新样本,获得更加平衡的训练数据;最后,采用逻辑回归、决策树、多层感知器、支持向量机和XGBoost这5种基模型,并使用if_any算法融合异质基模型。在9个不平衡数据集上的实验结果验证了该算法的可行性,同时,将提出的算法用于宫颈癌风险预测,增强了其对宫颈癌风险的理解和预测能力。 展开更多
关键词 不平衡数据 特征选择 集成学习 合成少数过采样技术
在线阅读 下载PDF
改进SMOTE的不平衡数据集成分类算法 被引量:33
16
作者 王忠震 黄勃 +2 位作者 方志军 高永彬 张娟 《计算机应用》 CSCD 北大核心 2019年第9期2591-2596,共6页
针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目... 针对不平衡数据集的低分类准确性,提出基于改进合成少数类过采样技术(SMOTE)和AdaBoost算法相结合的不平衡数据分类算法(KSMOTE-AdaBoost)。首先,根据K近邻(K NN)的思想,提出噪声样本识别算法,通过样本的K个近邻中所包含的异类样本数目,对样本集中的噪声样本进行精确识别并予以滤除;其次,在过采样过程中基于聚类的思想将样本集划分为不同的子簇,根据子簇的簇心及其所包含的样本数目,在簇内样本与簇心之间进行新样本的合成操作。在样本合成过程中充分考虑类间和类内数据不平衡性,对样本及时修正以保证合成样本质量,平衡样本信息;最后,利用AdaBoost算法的优势,采用决策树作为基分类器,对平衡后的样本集进行训练,迭代多次直到满足终止条件,得到最终分类模型。选择G-mean、AUC作为评价指标,通过在6组KEEL数据集进行对比实验。实验结果表明,所提的过采样算法与经典的过采样算法SMOTE、自适应综合过采样技术(ADASYN)相比,G-means和AUC在4组中有3组最高;所提分类模型与现有的不平衡分类模型SMOTE-Boost,CUS-Boost,RUS-Boost相比,6组数据中:G-means均高于CUS-Boost和RUS-Boost,有3组低于SMOTE-Boost;AUC均高于SMOTE-Boost和RUS-Boost,有1组低于CUS-Boost。验证了所提的KSMOTE-AdaBoost具有更好的分类效果,且模型泛化性能更高。 展开更多
关键词 不平衡数据分类 合成少数过采样技术 K近邻 过采样 聚类 ADABOOST算法
在线阅读 下载PDF
改进MDSMOTE与PSO-SVM在汽车组合仪表分类预测中的应用 被引量:2
17
作者 肖圳 何彦 +3 位作者 李育锋 吴鹏程 刘德高 杜江 《工程设计学报》 CSCD 北大核心 2022年第1期20-27,共8页
汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(sup... 汽车组合仪表生产过程中质检项目多且检测时间长,这在一定程度上制约了其生产效率的进一步提升。为此,提出一种基于改进最远点合成少数类过采样技术(max distance synthetic minority over-sampling technique,MDSMOTE)的支持向量机(support vector machine,SVM)分类预测方法。首先,结合专家经验对汽车组合仪表的原始生产数据进行特征筛选,并在MDSMOTE中引入类不平衡率IR,以对所筛选的特征数据进行扩充;然后,利用粒子群优化(particle swarm optimization,PSO)算法对SVM的误差惩罚因子C和核函数参数γ进行优化;最后,建立优化的SVM分类预测模型,并对汽车组合仪表进行分类。通过与其他分类预测模型在不同数据集上的预测结果进行对比可知,基于改进MDSMOTE的SVM分类预测模型的准确率、F值和几何平均值等评价指标均优于其他模型。所提出方法在汽车仪表产品分类上表现出较强的泛化能力和稳定性,可为仪表制造企业生产效率的提升提供有效参考。 展开更多
关键词 汽车组合仪表 分类预测 改进最远点合成少数过采样技术 支持向量机 粒子群优化
在线阅读 下载PDF
基于改进SMOTE的制造过程不平衡数据分类策略 被引量:6
18
作者 黎旭 陈家兑 +1 位作者 吴永明 宗文泽 《计算机工程与应用》 CSCD 北大核心 2022年第16期284-291,共8页
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique... 不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行K-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。 展开更多
关键词 不平衡数据 过采样 局部离群因子 聚类 合成少数过采样技术(SMOTE)
在线阅读 下载PDF
考虑过采样器与分类器参数优化的变压器故障诊断策略 被引量:19
19
作者 栗磊 王廷涛 +3 位作者 赫嘉楠 牛健 梁亚波 苗世洪 《电力自动化设备》 EI CSCD 北大核心 2023年第1期209-217,共9页
变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整... 变压器故障样本的不平衡性使得故障诊断分类准确率低,且容易弱化少数类故障样本的分类效果。对此,采用过采样方法实现故障样本的均衡化,并提出一种考虑过采样器与分类器参数优化的变压器故障诊断策略。首先,搭建变压器故障诊断模型的整体结构,阐述故障诊断的实现过程。在此基础上,提出诊断模型中过采样器、分类器、参数优化器3种主要环节的算法实现:针对过采样器,提出一种基于近邻分布特性的改进合成少数过采样算法实现故障样本的均衡化;针对分类器,采用层次式有向无环图支持向量机算法实现故障样本的多标签分类;针对参数优化器,提出一种双层参数优化方法,上层采用层次搜索算法对过采样倍率寻优,下层采用改进哈里斯鹰算法对支持向量机参数寻优。最后,对所提策略进行算例分析,结果表明,所提策略能够合成质量更高的少数类故障样本,实现故障样本的准确分类。 展开更多
关键词 电力变压器 故障诊断 不平衡样本 过采样 基于近邻分布特性的改进合成少数过采样 层次搜索-改进哈里斯鹰算法
在线阅读 下载PDF
面向非平衡多分类问题的二次合成QSMOTE方法 被引量:3
20
作者 韩明鸣 郭虎升 王文剑 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期1-13,共13页
近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善... 近年来非平衡多分类数据的学习问题在机器学习和数据挖掘领域备受关注,上采样技术成为解决数据不平衡问题的主要方法,然而已有的上采样技术仍有很多的不足,例如新合成的少数类样本仍可能分布在对应少数类样本的原始区域内,不能有效改善数据分布的不平衡情况.此外,若原始样本中不同类别样本分布存在重叠,则新合成的样本会更容易偏离到其他类样本分布中,从而造成过泛化现象,影响少数类样本的分类精度.为解决上述问题,提出一种二次合成的上采样方法(Quadratic Synthetic Minority Over-sampling Technique,QSMOTE).首先通过少数类样本的支持度选择包含重要信息的样本来进行第一次合成,然后通过分析指定少数类样本质心的邻域内样本分布情况来调整第二次样本合成范围,并最终进行第二次合成.在UCI和MNIST数据集上的实验结果表明,QSMOTE不仅可以改善数据分布的不平衡问题,而且可以尽可能地减少过泛化现象,特别是对少数类样本的分类准确率有大幅提升. 展开更多
关键词 多类非平衡问题 过泛化 重叠 合成少数类上采样技术(SMOTE)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部