可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多...可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。展开更多
针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)...针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。展开更多
文摘可再生能源大规模并网导致电力系统转动惯量降低,在扰动事件下的频率稳定问题突出。时域仿真存在计算量大、运算耗时长等缺陷,难以满足复杂多变运行方式和海量预想事故下的频率指标快速评估需求。为了实现功率扰动事件下系统惯性中心多维频率指标(极值频率、最大频率变化率、准稳态频率)的快速评估,该文将深度学习引入到频率稳定研究中,提出一种基于改进堆栈降噪自动编码器(improved stacked denoising autoencoders,ISDAE)的智能化评估方法。首先,利用随机森林算法筛选出重要特征变量作为输入数据,实现输入数据降维;然后,将多个降噪自动编码器堆叠,构建深度学习网络结构;采用"预训练-参数微调"方法训练网络参数,引入Dropout技术提高算法泛化能力、防止过拟合,基于均方根反向传播(root mean square back propagation,RMSprop)优化方法对网络参数进行微调,减小陷入局部最优的概率;最后,根据离线训练得到的ISDAE网络结构实现扰动事件后系统惯性中心的多维频率指标在线评估。在修改后的IEEE RTS-79系统进行测试,与时域仿真、浅层神经网络以及未改进的SDAE方法所得结果进行比较,验证所提方法的快速性、准确性以及良好的泛化能力。
文摘针对现有电动汽车电池状态估计方法存在运算效率低和估算准确率低的问题,提出一种模型以估算电动汽车电池荷电状态(state of charge,SOC)和健康状态(state of health,SOH)。采用堆叠降噪自编码器(stacked denosing auto encoder,SDAE)清洗电压、电流和温度数据中的异常数据和空缺数据,减小对估算精度的影响。引入动态通道剪枝(dynamical channel pruning,DCP)技术对Informer模型进行稀疏化处理,提高剪枝后模型的性能和稳定性。将清洗过的数据输入DCPInformer模型实现SOC和SOH的精确估计。实验结果表明,所提出的SDAE-DCPInformer模型估计SOC的平均绝对误差和均方根误差分别达到0.25%和0.38%,估计SOH的平均绝对误差和均方根误差分别达到了0.51%和0.64%。与传统Transformer等模型相比,所提模型预测SOC和SOH的速度更快,估算准确度有效提升,拥有的更好稳定性和泛化性。