期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
卷积循环神经网络的高光谱图像解混方法 被引量:2
1
作者 孔繁锵 余圣杰 +2 位作者 王坤 方煦 吕志杰 《西安电子科技大学学报》 北大核心 2025年第1期142-151,共10页
针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创... 针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。 展开更多
关键词 高光谱图像 循环神经网络 自编码器 卷积长短期记忆网络 深度光谱分区
在线阅读 下载PDF
基于卷积神经网络轻量化的改进SSD异纤检测方法 被引量:4
2
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进SSD 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
基于卷积循环神经网络的手写汉字文本识别 被引量:3
3
作者 胡瑞朋 何春燕 +2 位作者 张伟明 赵立新 李明博 《科学技术与工程》 北大核心 2025年第4期1547-1554,共8页
为了解决卷积循环神经网络(convolutional recurrent neural networks, CRNN)手写汉字文本识别网络模型的训练参数大、文本识别率低等问题,提出一种基于注意力双向长短期记忆网络(based on attention bi-directional long short-term me... 为了解决卷积循环神经网络(convolutional recurrent neural networks, CRNN)手写汉字文本识别网络模型的训练参数大、文本识别率低等问题,提出一种基于注意力双向长短期记忆网络(based on attention bi-directional long short-term memory network, AT-BLSTM)和知识蒸馏(knowledge distillation, KD)技术的手写汉字识别方法。通过对AT-BLSTM网络的输入向量特征赋予不同的权重,使模型训练数据集更加高效、准确;通过KD技术将一个高性能的大模型获取的知识传输到一个小模型中,在确保模型准确性的同时,减少训练参数和内存占比,得到一个性能更优的轻量级训练模型。该方法通过多组实验对比,汉字识别准确率提高了6.7%,训练参数减少15.94 M。该网络模型识别准确率达到97.9%,汉字识别效果更好。 展开更多
关键词 卷积循环神经网络(CRNN) 手写汉字文本识别 注意力机制 知识蒸馏(KD)
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
4
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
5
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
基于改进卷积神经网络的新能源并网短路电流预测技术
6
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
基于改进卷积神经网络的激光雷达图像轮廓提取优化方法
7
作者 陈远祝 《激光杂志》 北大核心 2025年第9期88-93,共6页
由于激光雷达图像具有稀疏性、不规则形等特点,在设计激光雷达图像轮廓提取方法时,通常会出现因图像轮廓点确定不准确导致提取性能较差的问题。对此,提出基于改进卷积神经网络的激光雷达轮廓提取优化方法。利用高斯滤波算法,对激光雷达... 由于激光雷达图像具有稀疏性、不规则形等特点,在设计激光雷达图像轮廓提取方法时,通常会出现因图像轮廓点确定不准确导致提取性能较差的问题。对此,提出基于改进卷积神经网络的激光雷达轮廓提取优化方法。利用高斯滤波算法,对激光雷达图像进行滤波处理,再进行膨胀和腐蚀运算,对其进行形态学处理。在改进卷积神经网络的作用下,利用神经网络的向前传播函数,计算图像轮廓点的损失函数值,通过对确定的图像轮廓点进行拟合,利用轮廓点权重函数,对图像轮廓提取结果进行优化。实验结果表明:基于改进卷积神经网络的激光雷达图像轮廓提取优化方法在实际应用中提取性能较好。 展开更多
关键词 改进卷积神经网络 激光雷达图像 轮廓提取 提取优化 高斯滤波 形态学计算
在线阅读 下载PDF
基于卷积神经网络的水稻叶片病害检测与识别研究进展
8
作者 朱周华 周怡纳 王斌 《中国农机化学报》 北大核心 2025年第10期176-182,191,共8页
我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶... 我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶片病害检测效率低并且准确率不高,但随着深度学习不断发展,基于卷积神经网络的病害检测与识别已成为研究人员关注的重要课题。针对近年来使用的模型算法总结归纳数据预处理与数据增强、框架结构改进和迁移学习等改进策略,对比分析这些算法的性能及其局限性,发现多数模型存在准确率与模型参数量性能不平衡的问题。从数据集构建、模型性能平衡和泛化能力等方面展望未来的研究趋势,为以后高效检测与识别水稻叶片病害提供参考。 展开更多
关键词 水稻叶片 病害检测与识别 卷积神经网络 目标检测 分类识别 改进策略
在线阅读 下载PDF
基于多元气象信息和改进组合神经网络的分布式光伏短期功率预测模型
9
作者 吴伟丽 米婵 李磊 《太阳能学报》 北大核心 2025年第11期181-192,共12页
为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,... 为提高光伏发电功率预测的准确性,提出一种考虑邻近电站气象信息的多元气象特征和改进组合神经网络的光伏功率短期预测模型。首先,考虑相邻分布光伏电站之间的地理因素和气候条件的相关性,利用灰色关联法确定待预测电站的主要影响因素,构成多元气象信息关键特征作为预测模型的输入序列。其次,结合时间卷积网络(TCN)对输入序列信息有效提取和双向门控循环单元(BiGRU)对数据双向学习的优势,搭建TCN-BiGRU组合预测模型,并采用改进后的灰狼优化算法(IGWO)对BiGRU进行超参数寻优,实现光伏发电功率的高精度预测。最后,利用实测数据对所提模型加以验证,并与同类方法进行对比。结果表明与多元气象信息结合,预测模型能够有效提高一年四季中不同类型天气的发电功率预测精度;与其他预测模型相比较,即使在气候条件剧烈变化或随机变化时,所提方法的预测结果也能呈现出良好的预测精度。 展开更多
关键词 光伏功率预测 神经网络 变分模态分解 双向门控循环单元 时间卷积网络 改进灰狼优化算法
在线阅读 下载PDF
基于改进门控循环神经网络的采煤机滚筒调高量预测 被引量:4
10
作者 齐爱玲 王雨 马宏伟 《工矿自动化》 CSCD 北大核心 2024年第2期116-123,共8页
采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采... 采煤机自适应截割技术是实现综采工作面智能化开采的关键技术。针对采煤机在复杂煤层下自动截割精度较低的问题,提出了一种基于改进门控循环神经网络(GRU)的采煤机滚筒调高量预测方法。鉴于截割轨迹纵向及横向相邻数据之间的相关性,采用定长滑动时间窗法对获取的采煤机滚筒高度数据进行预处理,将输入数据划分为连续、大小可调的子序列,同时处理横向、纵向的特征信息。为提高模型预测效率,满足循环截割的实时性要求,提出了一种用因果卷积改进的门控循环神经网络(CC-GRU),对输入数据进行双重特征提取和双重数据过滤。CC-GRU利用因果卷积提前聚焦序列纵向的局部时间特征,以减少计算成本,提高运算速度;利用门控机制对卷积得到的特征进行序列化建模,以捕捉元素之间的长期依赖关系。实验结果表明,采用CC-GRU模型对采煤机滚筒调高量进行预测,平均绝对误差(MAE)为43.80 mm,平均绝对百分比误差(MAPE)为1.90%,均方根误差(RMSE)为50.35 mm,决定系数为0.65,预测时间仅为0.17 s;相比于长短时记忆(LSTM)神经网络、GRU、时域卷积网络(TCN),CC-GRU模型的预测速度较快且预测精度较高,能够更准确地对采煤机调高轨迹进行实时预测,为工作面煤层模型的建立和采煤机调高轨迹的预测提供了依据。 展开更多
关键词 采煤机 滚筒调高 煤岩识别 深度学习 门控循环神经网络 因果卷积
在线阅读 下载PDF
基于知识蒸馏的卷积神经网络压缩方法 被引量:1
11
作者 郑筠 高朋 《沈阳工业大学学报》 北大核心 2025年第3期348-354,共7页
【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提... 【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提出了严峻挑战。【方法】为减少神经网络的大小和计算量,并提高模型的效率和可部署性,提出了基于知识蒸馏的卷积神经网络压缩方法。通过将大型复杂模型(教师网络模型)中的知识转移给小型精简模型(学生网络模型)来实现模型的压缩和加速,本文建立了性能优异的教师网络和结构更简单、参数更少的学生网络。教师网络负责提供丰富的特征表示和准确的预测结果,学生网络则通过学习教师网络行为来逼近其性能。使用标准损失函数,并通过反向传播算法迭代更新其参数,确保其在训练数据集上达到良好的性能。采用改进知识蒸馏方法获取综合阈值函数,评估教师网络和学生网络之间的知识差异,并指导学生网络的学习过程。在训练过程中,学生网络利用综合阈值函数进行监督,逐步逼近教师网络的输出,同时保持较小的模型结构和计算复杂度,从而实现了卷积神经网络的压缩处理。【结果】实验结果表明:本文方法在ImageNet和Labelme数据集上均表现出较好的模型压缩效果。其中,本文方法在压缩前后卷积神经网络输出结果的拟合度较高,表明学生网络成功学到了教师网络的关键特征;交叉熵损失值较低,在1.0左右,进一步验证了其良好的预测性能;完成卷积神经网络模型的压缩时间较短,为79.8~89.4 s,表明本文方法具有较高的计算效率。【结论】由以上结果可知,基于知识蒸馏卷积神经网络压缩方法能够有效减小模型结构、降低计算量,并保持甚至提升了模型的性能。本文方法不仅为模型压缩提供了一种新的思路,还为深度学习模型的部署和应用提供了有力支持。此外,本文方法在知识蒸馏方法上进行了改进,通过引入综合阈值函数来更全面地评估和指导模型的学习过程,在一定程度上提升了知识蒸馏的效果和效率。因此,本文方法不仅具有理论价值,还具有重要的实践意义。 展开更多
关键词 卷积神经网络压缩 改进知识蒸馏方法 判别器 学生网络 教师网络 标准损失函数 综合阈值函数 交叉熵损失值
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:2
12
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于CNN-GRU组合神经网络的锂电池寿命预测模型研究 被引量:1
13
作者 张安安 谢琳惺 杨威 《电测与仪表》 北大核心 2025年第7期77-84,共8页
针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从... 针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从锂电池充电和放电实验中提取恒流充电时间间隔、恒压充电时间间隔、放电温度峰值时间及循环次数四种间接健康因子,建立Pearson及Spearman相关系数;构建基于CNN-GRU组合神经网络的锂电池寿命预测模型;通过实际数据验证提取健康因子的合理性,并将预测结果与支持向量机模型、长短期记忆(long short-term memory,LSTM)模型、GRU模型、CNN-LSTM模型对比分析,验证所提模型的优越性及有效性。 展开更多
关键词 锂电池 健康因子 相关系数 卷积神经网络 门控循环单元
在线阅读 下载PDF
循环相关熵和一维浅卷积神经网络轴承故障诊断 被引量:1
14
作者 李辉 徐伟烝 《机械科学与技术》 CSCD 北大核心 2024年第4期600-610,共11页
针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循... 针对传统二维深度卷积神经网络结构复杂、易产生过拟合和难以有效处理低信噪比信号的问题,提出了一种基于循环相关熵和一维浅卷积神经网络的故障诊断-CCe-1D SCNN方法。该方法综合利用了一维浅卷积神经网络结构简单、计算复杂度低和循环相关熵能在低信噪比环境下有效提取故障特征的优点。首先,计算轴承故障振动信号的循环相关熵函数、循环相关熵谱密度函数和广义循环平稳度;其次,将一维归一化的广义循环平稳度作为一维浅卷积神经网络的输入层,通过一维浅卷积神经网络自动实现故障特征提取和模式分类;最后,将CCe-1D SCNN方法应用于电机轴承故障特征提取和分类,实验结果表明:CCe-1D SCNN方法在低噪声比情况下仍能保持很高的模式识别正确率,为一种自动故障特征提取和模式识别的有效方法。 展开更多
关键词 循环相关熵 一维浅卷积神经网络 深度学习 循环平稳信号 故障诊断
在线阅读 下载PDF
仪器地震烈度场实时预测神经网络模型
15
作者 陈欣 李山有 +3 位作者 卢建旗 谢志南 马强 陶冬旺 《地球物理学报》 北大核心 2025年第11期4288-4302,共15页
快速、准确地预测地震烈度场对于确定地震预警信息发布范围至关重要.本文提出了一种基于卷积神经网络与长短时记忆神经网络相结合的地震烈度场实时预测模型(CL-RIMAP).该模型利用首台触发后5~10 s多个时段、多个测点的强震动时空观测序... 快速、准确地预测地震烈度场对于确定地震预警信息发布范围至关重要.本文提出了一种基于卷积神经网络与长短时记忆神经网络相结合的地震烈度场实时预测模型(CL-RIMAP).该模型利用首台触发后5~10 s多个时段、多个测点的强震动时空观测序列数据为输入,预测当前时刻后25 s的烈度场.模型在测试集上的烈度场均方误差为0.236,高烈度区预测准确度为54.20%,并在更长时间序列下上升至83.80%,烈度峰值预测误差均值低于0.12、标准差在0.27左右、均方误差为0.142.与单一卷积神经网络(CNN-RIMAP)和单一长短时记忆网络(LSTMRIMAP)模型相比,CL-RIMAP在整体预测精度和高烈度区域预测方面表现更优.采用2016年熊本地震7.3级地震作为震例验证了CL-RIMAP模型在地震烈度场空间分布预测中具有很好的应用潜力.该模型不仅可以充分利用现有观测数据,还能减少地震定位、震级估算以及破裂走向和尺度实时估算等复杂过程,在地震预警中有很好的应用前景. 展开更多
关键词 地震预警 地震烈度场 卷积神经网络 循环神经网络 实时预测
在线阅读 下载PDF
基于卷积神经网络的入侵昆虫识别研究 被引量:2
16
作者 黄亦其 鹿林飞 +2 位作者 沈豪 王福宽 乔曦 《中国农机化学报》 北大核心 2024年第7期222-227,261,共7页
现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷... 现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷积神经网络模型DenseNet121、MobileNetV3、ResNet101和ShuffleNet对其进行训练测试分析讨论。结果表明,在入侵昆虫综合识别系统识别功能后台算法应用上,MobileNetV3表现出更好的综合性能。根据MobileNetV3模型现有缺陷和模型特性,对MobileNetV3模型指定瓶颈层的注意力机制和激活函数进行改进,改进后模型的准确率为92.8%,单张测试集图像的平均识别时间0.012 s,相较于原MobileNetV3模型分别提高0.5%、缩短15.2%,可以很好满足多昆虫识别分类需求。 展开更多
关键词 入侵昆虫 卷积神经网络 模型改进 图像识别
在线阅读 下载PDF
基于神经网络和稳健估计的风电机组状态监测
17
作者 岳子桐 李艳婷 赵宇 《中国机械工程》 北大核心 2025年第8期1842-1852,共11页
在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度... 在风力发电机组的状态监测中,温度时序数据作为评估其运行是否稳定的关键指标,通常由数据采集与监视控制(SCADA)系统进行收集。提出了一种利用温度数据来实现更加稳健的风电机组状态监测的新方法。为了解决传统预测模型存在的收敛速度慢的问题,采用卷积神经网络(CNN)与双向门控循环单元(BiGRU)相结合的网络结构,并引入一种新颖的优化算法——长鼻浣熊优化算法(COA),以改善温度预测模型的训练效果。此外,考虑到实际操作环境中传统控制图存在较高的假警报率这一问题,提出了一种结合中位数估计(MED)与最小正则化加权协方差行列式估计(MRWCD)的策略,用于残差向量的稳健性监测。基于上述改进,建立了一个多元指数加权移动平均控制图。在华东地区某一风电场的应用案例表明,相较于传统的监测手段,所提方法能够显著减少误报的情况,并且在风电机组的状态监测过程中,可靠性与稳定性更高。 展开更多
关键词 风电机组状态监测 卷积神经网络-双向门控循环单元 长鼻浣熊优化算法 稳健检验统计量
在线阅读 下载PDF
基于卷积神经网络算法的海水循环冷却污损生物分类模型
18
作者 张益 《工业水处理》 CAS CSCD 北大核心 2024年第12期160-165,共6页
海水循环冷却系统取水头部及管道中污损生物附着会堵塞管道,加速腐蚀,严重影响设备的正常运行。杀生剂的投加方案与污损生物的种类密切相关,由于监测困难,现在通常采用固定杀生剂投加方案。污损生物在管壁建构筑物上的附着主要是以优势... 海水循环冷却系统取水头部及管道中污损生物附着会堵塞管道,加速腐蚀,严重影响设备的正常运行。杀生剂的投加方案与污损生物的种类密切相关,由于监测困难,现在通常采用固定杀生剂投加方案。污损生物在管壁建构筑物上的附着主要是以优势种群聚集附着的形式,可以在海水管道头部及管道中加装摄像头,实现污损生物的监测,以便及时调整加药方案。利用卷积神经网络算法,建立污损生物分类模型,实现常见污损生物的自动分类。利用常见污损生物聚集图像作为模型训练数据,以交叉熵损失函数和准确率作为模型评价指标,进行模型训练。该模型分类准确率较高,可用于自动化加药设备中污损生物的自动识别,以此为基础,配合自动化加药设备,可实现杀生药剂投加方案的自动实时调整,提高海水循环冷却系统的精细化管理水平。 展开更多
关键词 海水循环冷却 卷积神经网络 计算机视觉 污损生物分类
在线阅读 下载PDF
基于SSA-BiGRU-CNN神经网络和波动数据修正的电动汽车短期负荷预测模型 被引量:1
19
作者 张钰声 曹敏 +1 位作者 雷宇 李龙 《电网与清洁能源》 北大核心 2025年第2期67-74,共8页
为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network... 为提高区域级电动汽车负荷预测精度,考虑了历史负荷数据自身的内在联系以及天气因素所带来的波动影响,提出一种基于麻雀搜索算法的双向门控循环单元(bidirectional gaterecurrentunit,BiGRU)-卷积神经网络(convolutional neural network,CNN)的电动汽车短期负荷预测模型。构建BiGRU-CNN模型,并应用麻雀搜索算法(sparrowsearch algorithm,SSA)对BiGRU神经网络参数进行优化;利用BiGRU神经网络充分学习历史负荷数据的前、后向联系,采用CNN对历史负荷数据进行局部优化,并通过全连接层进行预测;考虑到天气数据内部规律性不强,采用BiGRU-CNN神经网络对天气数据所带来的负荷波动进行误差预测和修正。以陕西某区域电动汽车充电站为例,分别预测预见期为4 h和24 h的电动汽车负荷,实验结果表明,所提模型无论在工作日还是双休日都具有很高的预测精度,验证了所提方法的有效性。 展开更多
关键词 电动汽车 负荷预测 双向门控循环单元 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
20
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部