期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
任意边界条件下环扇形板面内振动特性分析 被引量:21
1
作者 史冬岩 石先杰 李文龙 《振动工程学报》 EI CSCD 北大核心 2014年第1期1-8,共8页
基于改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对任意边界条件下环扇形板的面内自由振动特性进行计算分析,任意边界条件可采用沿各边界均匀分布的法向和切向线性弹簧来模拟。环扇形板的径向和切向位移函数被不变地表示... 基于改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对任意边界条件下环扇形板的面内自由振动特性进行计算分析,任意边界条件可采用沿各边界均匀分布的法向和切向线性弹簧来模拟。环扇形板的径向和切向位移函数被不变地表示为改进傅里叶级数形式,并通过引入正弦函数项来克服弹性边界的不连续或跳跃现象。将位移函数的傅里叶展开系数看作广义坐标,并采用瑞利-里兹方法对其进行求解,得到一个关于未知傅里叶系数的标准特征值问题。通过求解标准特征值问题而简单地求解环扇形板面内振动的固有频率及其振型。通过不同边界条件下环扇形板模型结果与文献解及有限元法结果相对比来验证了本文方法的正确性及可靠性。 展开更多
关键词 结构动力分析 环扇形板 改进傅里叶级数方法 任意边界条件 面内振动
在线阅读 下载PDF
不同截面形状下弹性支撑多跨梁振动特性分析 被引量:11
2
作者 鲍四元 周静 《中国舰船研究》 CSCD 北大核心 2020年第1期162-169,共8页
[目的]为克服边界及弹性横向支撑对连续多跨梁振动特性研究的束缚,基于欧拉梁理论,建立一种多跨梁自由振动的分析模型。[方法]首先,构造新型改进傅里叶级数形式,用以表示多跨梁在整段上的横向位移函数;其次,将位移函数的级数表达式代入... [目的]为克服边界及弹性横向支撑对连续多跨梁振动特性研究的束缚,基于欧拉梁理论,建立一种多跨梁自由振动的分析模型。[方法]首先,构造新型改进傅里叶级数形式,用以表示多跨梁在整段上的横向位移函数;其次,将位移函数的级数表达式代入拉格朗日函数中,结合瑞利-里兹法,将自由振动问题变为标准矩阵特征值形式,以求解带有弹性支撑的多跨梁固有频率。[结果]通过在算例部分改变弹性支撑处的横向弹簧刚度值,即可获得中间含任意弹性支撑多跨梁的振动特性,所得结果与已有文献结果的比较充分验证了所提方法可行且正确。[结论]基于改进傅里叶级数法(IFSM),多跨梁振动特性的数值模拟可为多跨梁动态性能提供有效的前期预测手段。 展开更多
关键词 多跨梁 弹性支撑 固有频率 改进傅里叶级数方法
在线阅读 下载PDF
任意弹性边界下矩形板弹性屈曲分析 被引量:3
3
作者 鲍四元 曹津瑞 《中国舰船研究》 CSCD 北大核心 2020年第6期162-169,共8页
[目的]矩形薄板的屈曲研究具有重要的理论和实际意义。针对工程中常见的矩形薄板结构,为了研究其在任意弹性边界条件下受轴向压力的屈曲特性,给出一种基于系统最小势能原理计算弹性失稳时屈曲载荷的方法。[方法]首先,在板结构模型的四... [目的]矩形薄板的屈曲研究具有重要的理论和实际意义。针对工程中常见的矩形薄板结构,为了研究其在任意弹性边界条件下受轴向压力的屈曲特性,给出一种基于系统最小势能原理计算弹性失稳时屈曲载荷的方法。[方法]首先,在板结构模型的四条边界上分别设置旋转约束弹簧和横向约束弹簧,并设定两类弹性弹簧的刚度值大小以模拟任意弹性边界条件。由于经典傅里叶级数形式的位移函数在边界上的导数可能存在不连续问题,因此引入辅助函数,并以三角级数形式建立位移函数的几何表达式。然后,建立矩形板系统的势能表达式,结合最小势能原理,对未知傅里叶系数求偏导建立线性方程组。最后,求解得到矩形板临界屈曲载荷等参数,给出不同边界条件下弹簧刚度的合理取值,并将本研究所提方法得到的屈曲载荷与文献中的计算结果进行对比。[结果]结果显示,采用本研究方法所得屈曲载荷与文献中的计算结果吻合良好,验证了本文研究方法的正确性和收敛性。[结论]研究成果可为船舶相关结构的分析提供参考。 展开更多
关键词 任意边界条件 矩形板 屈曲 改进傅里叶级数方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部