The development of human genome project calls for more rapid and accurate protein structure prediction method to assign the structure and function of gene products. Threading has been proved to be successful in protei...The development of human genome project calls for more rapid and accurate protein structure prediction method to assign the structure and function of gene products. Threading has been proved to be successful in protein fold assignment,although difficulties remain for low homologous sequences. We have developed a method for solving the sequence rearrangement problem in threading. By reshuffling secondary elements,protein structures with the same spatial arrangement of secondary structures but different connections can be predicted. This method has been proved to be useful in fold recognition for proteins of different evolutionary origin and converge to the same fold.展开更多
A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results ...A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.展开更多
文摘The development of human genome project calls for more rapid and accurate protein structure prediction method to assign the structure and function of gene products. Threading has been proved to be successful in protein fold assignment,although difficulties remain for low homologous sequences. We have developed a method for solving the sequence rearrangement problem in threading. By reshuffling secondary elements,protein structures with the same spatial arrangement of secondary structures but different connections can be predicted. This method has been proved to be useful in fold recognition for proteins of different evolutionary origin and converge to the same fold.
基金Project(2011FJ3016)supported by the Research Foundation of Science & Technology Office of Hunan Province,China
文摘A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.