Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fi...There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.展开更多
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.
基金Project(60574030) supported by the National Natural Science Foundation of ChinaKey Project(60634020) supported by the National Natural Science Foundation of China
文摘There are defects such as the low convergence rate and premature phenomenon on the performance of simple genetic algorithms (SGA) as the values of crossover probability (Pc) and mutation probability (Pro) are fixed. To solve the problems, the fuzzy control method and the genetic algorithms were systematically integrated to create a kind of improved fuzzy adaptive genetic algorithm (FAGA) based on the auto-regulating fuzzy rules (ARFR-FAGA). By using the fuzzy control method, the values of Pc and Pm were adjusted according to the evolutional process, and the fuzzy rules were optimized by another genetic algorithm. Experimental results in solving the function optimization problems demonstrate that the convergence rate and solution quality of ARFR-FAGA exceed those of SGA, AGA and fuzzy adaptive genetic algorithm based on expertise (EFAGA) obviously in the global search.