针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合H...针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合Haar小波变换,仅对低频子频带的图像进行NAS-RIF算法复原,而高频子频带的信息,则通过带间预测分别从低频子频带的复原图像中预测得到;最后,为了保证高频信息的准确性,提出了一种基于最小均方误差(MMSE)的带间预测。分别对模拟退化图像和真实图像进行了仿真实验,采用该算法得到的信噪比增益分别为5.221 6 d B和8.103 9 d B。实验结果表明:该算法在保持图像边缘细节的前提下,能够较好地抑制噪声;此外,该算法的运算效率也得到了较大的提高。展开更多
结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方...结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方面对经典非局部均值滤波算法进行适当改进,将改进后的非局部均值滤波算法(INLMF)应用于处理高频分解系数,然后将滤波后的高频分解系数与低频分解系数进行重构,得到去噪后的图像,最后对去噪后图像采用非负支撑域有限递归逆滤波(Non-negativity and Support Constraints Recursive Inverse Filtering,NAS-RIF)算法进行图像复原,以尽可能消除因滤波造成的图像失真。测试结果表明,本文算法滤波效果优于NLMF及其已有的改进算法。展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
文摘针对非负支撑域受限递归逆滤波(NAS-RIF)算法对噪声敏感和耗时长等缺点,提出了一种改进的NASRIF盲复原算法。首先,为了改进原始NAS-RIF算法的抗噪性能和复原效果,引入了一种新的NAS-RIF算法代价函数;其次,为了提高算法的运算效率,结合Haar小波变换,仅对低频子频带的图像进行NAS-RIF算法复原,而高频子频带的信息,则通过带间预测分别从低频子频带的复原图像中预测得到;最后,为了保证高频信息的准确性,提出了一种基于最小均方误差(MMSE)的带间预测。分别对模拟退化图像和真实图像进行了仿真实验,采用该算法得到的信噪比增益分别为5.221 6 d B和8.103 9 d B。实验结果表明:该算法在保持图像边缘细节的前提下,能够较好地抑制噪声;此外,该算法的运算效率也得到了较大的提高。
文摘结合非下采样轮廓波变换(NSCT),提出了一种红外图像改进非局部均值滤波算法(Improved Non-local Means Filtering,INLMF)。该算法首先对红外噪声图像进行多尺度NSCT变换,其次分别从相似图像块自适应划分方法以及滤波权重计算方法 2个方面对经典非局部均值滤波算法进行适当改进,将改进后的非局部均值滤波算法(INLMF)应用于处理高频分解系数,然后将滤波后的高频分解系数与低频分解系数进行重构,得到去噪后的图像,最后对去噪后图像采用非负支撑域有限递归逆滤波(Non-negativity and Support Constraints Recursive Inverse Filtering,NAS-RIF)算法进行图像复原,以尽可能消除因滤波造成的图像失真。测试结果表明,本文算法滤波效果优于NLMF及其已有的改进算法。
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.