期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种改善支撑向量域描述性能的核优化算法 被引量:16
1
作者 赵峰 张军英 刘敬 《自动化学报》 EI CSCD 北大核心 2008年第9期1122-1127,共6页
支撑向量域描述(Support vector domain description,SVDD)是一种重要的数据描述算法,其性能受核参数的影响很大.基于最优核参数应导致特征空间中映射数据的分布是一个超球形区域的思想,提出一种核参数优化算法.首先,基于训练样本在特... 支撑向量域描述(Support vector domain description,SVDD)是一种重要的数据描述算法,其性能受核参数的影响很大.基于最优核参数应导致特征空间中映射数据的分布是一个超球形区域的思想,提出一种核参数优化算法.首先,基于训练样本在特征空间所张成的子空间的一组标准正交基,给出一种描述映射数据分布的方法,回避了映射数据不可表示的难题;其次,基于最大熵原则的非高斯性测度,构造了一个估计数据分布逼近超球形区域程度的判别准则,用以确定最优核参数.基于仿真数据与实测数据的实验验证了本文方法的有效性。 展开更多
关键词 支撑向量域描述 核函数 非高斯性测度
在线阅读 下载PDF
支撑向量数据域描述优化问题最优解理论分析 被引量:8
2
作者 王晓明 王士同 《软件学报》 EI CSCD 北大核心 2011年第7期1551-1560,共10页
支撑向量数据域描述(support vector data description,简称SVDD)作为一种已经得到广泛应用的核方法,目前研究主要集中在其性能和效率的提高上,然而该算法优化问题最优解性质的理论性质却没有得到足够的关注.为此,首先把SVDD定义的原始... 支撑向量数据域描述(support vector data description,简称SVDD)作为一种已经得到广泛应用的核方法,目前研究主要集中在其性能和效率的提高上,然而该算法优化问题最优解性质的理论性质却没有得到足够的关注.为此,首先把SVDD定义的原始优化问题等价转化为一个凸约束二次优化问题,然后从理论上证明了其构建的超球圆心具有唯一性,然而超球半径在一定条件下却存在不唯一性,并且给出了半径存在不唯一性的充分必要条件.还从对偶优化问题的角度分析了超球的圆心和半径性质,并且给出了SVDD算法中在根据优化问题最优解构建超球半径不唯一情况下计算超球半径的方法.完善了该算法的理论和方法体系,从而为其更深入的研究和应用奠定了理论基础. 展开更多
关键词 核方法 支撑向量数据描述 凸优化 唯一性
在线阅读 下载PDF
最小方差支撑向量数据域描述
3
作者 王晓明 王士同 彭宏 《计算机应用》 CSCD 北大核心 2012年第2期416-418,424,共4页
支撑向量数据域描述(SVDD)是一种已经得到了广泛应用的核方法,但是其在构建超球时没有充分考虑数据分布信息。针对此问题,首先等价改写了SVDD算法优化问题,然后重新定义了该优化问题中的距离定义形式,进而提出了最小方差支撑向量数据域... 支撑向量数据域描述(SVDD)是一种已经得到了广泛应用的核方法,但是其在构建超球时没有充分考虑数据分布信息。针对此问题,首先等价改写了SVDD算法优化问题,然后重新定义了该优化问题中的距离定义形式,进而提出了最小方差支撑向量数据域描述(MVSVDD)算法。该算法充分考虑数据的分布信息。实验结果表明,相对于传统SVDD算法,MVSVDD在泛化能力上得到了较为明显的提高,体现出了更好的描述数据域的能力。 展开更多
关键词 支撑向量数据描述 核方法 例外点检测 最小类方差支撑向量 数据分布
在线阅读 下载PDF
基于训练特征空间分布的雷达地面目标鉴别器设计 被引量:9
4
作者 李龙 刘峥 《电子与信息学报》 EI CSCD 北大核心 2016年第4期950-957,共8页
该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的... 该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的支撑向量域描述方法确定样本特征空间的边界与支撑向量,利用样本特征空间边界与加权K近邻原则对目标类别进行判决。该方法解决了库内目标与库外目标的鉴别问题,提高了目标识别系统的总体性能。针对多种不同姿态下目标特征空间非均匀聚合的特点,对训练样本特征空间进行区域划分,减小模板匹配搜索运算规模,保证目标鉴别所需的实时性工作要求。最后通过仿真和实测数据验证了该方法具备优良的鉴别性能与良好的实时处理能力。 展开更多
关键词 目标鉴别 高分辨距离像 K-MEANS聚类 支撑向量域描述 K近邻分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部