期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多线性主成分分析的支持高阶张量机 被引量:3
1
作者 曾奎 何丽芳 杨晓伟 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期219-227,共9页
为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法... 为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法,而支持高阶张量机算法是张量分类算法中最有效的方法之一.考虑到张量的高维性和高冗余性,本文提出基于多线性主成分分析的支持高阶张量机分类算法(Multilinear Principle Component Analysis Based Support High-Order Tensor Machine,MPCA+SHTM).该算法首先利用多线性主成分分析对张量进行降维,然后利用支持高阶张量机对降维后的张量进行学习.在12个张量数据集上的实验表明:MPCA+SHTM在保持测试精度的情况下有效地降低了SHTM的计算时间. 展开更多
关键词 支持高阶张量机 多线性主成分分析 分解 交替投影张 support HIGHER-ORDER TENSOR machine(SHTM) MULTILINEAR PRINCIPLE component analysis(MPCA)
在线阅读 下载PDF
弱数据下多源传感融合的某试车台气路健康评估方法
2
作者 唐智 柏林 +2 位作者 白豪 吴过 王章旭 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期10-18,共9页
航天发动机试车台作为检验发动机可靠性的关键装备,其健康状态评估对确保发动机安全运行具有重要意义。试车台气路系统具有故障模式复杂多变,多点位、多模态传感信息关联性强等特点,且存在数据积累有限、采集的健康状态样本分布不均、... 航天发动机试车台作为检验发动机可靠性的关键装备,其健康状态评估对确保发动机安全运行具有重要意义。试车台气路系统具有故障模式复杂多变,多点位、多模态传感信息关联性强等特点,且存在数据积累有限、采集的健康状态样本分布不均、人工监测运行状态造成人力资源浪费以及高误警率等问题。为此,提出了基于自适应重构相空间-支持高阶张量机的健康评估模型。该方法首先通过设计E1(m)的稳定性判定准则,实现对气路系统相空间的自适应重构;其次采用张量对气路系统的多点位、多模态数据进行表征;然后基于支持高阶张量机挖掘张量样本中的多源传感关联信息与健康模式,实现对试车台气路系统的健康状态评估;最后利用中航某所发动机试车台实际试车数据,与支持向量机、决策树与朴素贝叶斯算法对比,结果表明提出方法在弱数据环境下具有良好评估能力,整体评估精度为89.7%,在极端弱数据环境,精度下降保持在8%以内。 展开更多
关键词 发动试车台 健康评估 支持高阶张量机 相空间重构 信息融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部