期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于支持向量机集成学习方法的高新技术上市公司绩效预测研究 被引量:2
1
作者 吴荣顺 王丹阳 戚啸艳 《东南大学学报(哲学社会科学版)》 CSSCI 北大核心 2015年第6期99-107 148,148,共10页
本文以创业板高新技术企业为对象,采集样本企业2011-—2014年的年报数据,通过构建支持向量机预测模型和支持向量机集成学习方法预测模型,预测样本企业的绩效。研究结果显示:两种预测模型均能有效预测样本企业的绩效,支持向量机集成学习... 本文以创业板高新技术企业为对象,采集样本企业2011-—2014年的年报数据,通过构建支持向量机预测模型和支持向量机集成学习方法预测模型,预测样本企业的绩效。研究结果显示:两种预测模型均能有效预测样本企业的绩效,支持向量机集成学习方法预测模型的准确度更高,样本数据越接近预测年度,预测的准确度越高。 展开更多
关键词 高新技术企业 绩效预测 支持向量机预测模型 集成学习方法
在线阅读 下载PDF
基于SBAS-InSAR和GM-SVR的居民区形变监测与预测 被引量:24
2
作者 李金超 高飞 +1 位作者 鲁加国 方睿 《大地测量与地球动力学》 CSCD 北大核心 2019年第8期837-842,共6页
采用合成孔径雷达时序分析方法,利用2016-12~2017-05(12 d为一个周期)连续13景哨兵卫星雷达影像对淮南矿区内的居民区杨聚庄进行形变监测。根据矿区形变特征,提出一种基于灰色支持向量机(GM-SVR)的组合预测模型对矿区形变进行预测,并与... 采用合成孔径雷达时序分析方法,利用2016-12~2017-05(12 d为一个周期)连续13景哨兵卫星雷达影像对淮南矿区内的居民区杨聚庄进行形变监测。根据矿区形变特征,提出一种基于灰色支持向量机(GM-SVR)的组合预测模型对矿区形变进行预测,并与传统的单一灰色模型和支持向量机预测模型进行对比。结果表明,时序InSAR技术和GM-SVR模型的结合,可以实现对矿区形变的快速监测和灾害预防,为矿区灾害监测与预警提供了一种可靠手段。 展开更多
关键词 合成孔径雷达差分干涉 小基线集 灰色支持向量机预测模型 灾害预警
在线阅读 下载PDF
基于混合算法的通信用户规模预测
3
作者 燕敏 王春洁 《现代电子技术》 北大核心 2016年第23期25-28,共4页
考虑到常规SVR预测模型及GA优化和PSO优化的SVR预测模型具有寻优结果稳定性差,容易陷入局部最优解等问题,将具有极强的鲁棒性能和全局搜索能力、能够快速跳出局部最优解等优点的人工鱼群算法与SVR算法进行混合,建立基于混合算法的预测... 考虑到常规SVR预测模型及GA优化和PSO优化的SVR预测模型具有寻优结果稳定性差,容易陷入局部最优解等问题,将具有极强的鲁棒性能和全局搜索能力、能够快速跳出局部最优解等优点的人工鱼群算法与SVR算法进行混合,建立基于混合算法的预测模型。通过混合后的算法能够有效地使算法更快、更准确地得到全局最优解,避免了常规算法在人工鱼更新位置时没有全局信息,只有局部信息引起的收敛速度慢,精度低等问题。使用该混合算法预测模型以及使用传统的三次曲线拟合法和GA-SVR算法建立通信用户规模预测模型,针对2010—2012年通信用户规模进行预测,实验证明基于混合算法的通信用户规模预测模型的预测精度高,稳定性较好,相比另外两种算法,具有较强的优势。 展开更多
关键词 通信用户规模预测 混合算法 支持向量回归预测模型 人工鱼群算法
在线阅读 下载PDF
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
4
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions 被引量:11
5
作者 高栗 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期290-295,共6页
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu... Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one. 展开更多
关键词 tunnel boring machine(TBM) performance prediction rate of penetration(ROP) support vector machine(SVM) partial least squares(PLS)
在线阅读 下载PDF
Prediction method for surface finishing of spiral bevel gear tooth based on least square support vector machine
6
作者 马宁 徐文骥 +2 位作者 王续跃 魏泽飞 庞桂兵 《Journal of Central South University》 SCIE EI CAS 2011年第3期685-689,共5页
The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was ... The predictive model of surface roughness of the spiral bevel gear (SBG) tooth based on the least square support vector machine (LSSVM) was proposed.A nonlinear LSSVM model with radial basis function (RBF) kernel was presented and then the experimental setup of PECF system was established.The Taguchi method was introduced to assess the effect of finishing parameters on the gear tooth surface roughness,and the training data was also obtained through experiments.The comparison between the predicted values and the experimental values under the same conditions was carried out.The results show that the predicted values are found to be approximately consistent with the experimental values.The mean absolute percent error (MAPE) is 2.43% for the surface roughness and 2.61% for the applied voltage. 展开更多
关键词 pulse electrochemical finishing (PECF) surface roughness least squares support vector machine (LSSVM) PREDICTION
在线阅读 下载PDF
Parallel solving model for quantified boolean formula based on machine learning
7
作者 李涛 肖南峰 《Journal of Central South University》 SCIE EI CAS 2013年第11期3156-3165,共10页
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ... A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system. 展开更多
关键词 machine learning quantified boolean formula parallel solving knowledge sharing feature extraction performance prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部