期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于SVM-MOPSO混合智能算法的配电网分布式电源规划 被引量:8
1
作者 刘煌煌 雷金勇 +3 位作者 蔡润庆 陈钢 杨振纲 刘前进 《电力系统保护与控制》 EI CSCD 北大核心 2014年第10期46-55,共10页
针对分布式电源(Distributed Generation,DG)并网给电力系统带来的随机扰动,综合考虑配电网运行效益,计及风光时序特性,以经济性、电能质量及环保性为目标,搭建了机会约束规划模型。采用混合智能算法求解,即基于支持向量机(Support Vect... 针对分布式电源(Distributed Generation,DG)并网给电力系统带来的随机扰动,综合考虑配电网运行效益,计及风光时序特性,以经济性、电能质量及环保性为目标,搭建了机会约束规划模型。采用混合智能算法求解,即基于支持向量机(Support Vector Machine,SVM)算法模拟优化变量到目标函数以及约束条件映射的不确定性函数,运用多目标粒子群算法(Multi-Objective Particle Swarm Optimization,MOPSO)求解模型,得出Pareto非劣决策集并给出典型解及理想解。算例结果表明,该规划方法考虑到DG的随机性特征、时序特性和并网概率分布,能提高算法执行效率,证明了所提方法的合理性和有效性,且Pareto前沿的引入,给决策者充分选择空间,更具有工程性。 展开更多
关键词 分布式电源规划 时序特性 混合智能算法 支持向量机模拟 多目标粒子群算法
在线阅读 下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
2
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
在线阅读 下载PDF
Forecasting of wind velocity:An improved SVM algorithm combined with simulated annealing 被引量:2
3
作者 刘金朋 牛东晓 +1 位作者 张宏运 王官庆 《Journal of Central South University》 SCIE EI CAS 2013年第2期451-456,共6页
Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th... Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy. 展开更多
关键词 wind velocity forecasting improved algorithm simulated annealing support vector machine
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部