期刊文献+
共找到1,431篇文章
< 1 2 72 >
每页显示 20 50 100
基于红狐优化支持向量机回归的船舶备件预测
1
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
2
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构姿态 掘进比能 支持向量回归
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
3
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
4
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
采用改进支持向量机的浅海水声信道小样本估计 被引量:2
5
作者 郑巧宁 郑浩赐 +2 位作者 李茂林 童峰 陈东升 《哈尔滨工程大学学报》 北大核心 2025年第3期390-400,共11页
针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道... 针对快变浅海水声信道相干时间短,信道估计算法需要具备小样本学习能力这一要求,本文提出一种适用于浅海水声信道的基于改进支持向量机的浅海水声信道小样本估计算法。基于最大间隔原理推导出支持向量机回归信道估计模型,并针对时变信道,在支持向量机代价函数中引入时变因子改善估计器与时变信道的适配程度,对该算法在时变信道下的小样本估计性能表现进行了仿真和浅海信道实测验证。结果表明:本文算法在信道估计误差和误比特性能方面均优于传统估计器,在信道估计观测窗长较短的情况下尤其如此。本文提出的改进支持向量机估计算法在小样本场景下展现出优异性能,为快变浅海水声信道估计提供了有效解决方案,对提升水声通信性能具有重要意义。 展开更多
关键词 支持向量回归 改进支持向量 稀疏性 小样本 时变信道 水声通信 信道估计 浅海水声环境
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
6
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于变量敏感度筛选的回归型支持向量机的数控机床热误差预测 被引量:2
7
作者 李铁军 崔尚仪 张义民 《机械设计与制造》 北大核心 2024年第9期41-43,50,共4页
随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低... 随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低的干扰自变量。本方法与基本SVR模型对数控机床热误差预测值进行对比,结果表明基本SVR受到敏感度低的干扰自变量影响,预测结果与实测热误差结果偏差较大;经过变量敏感度筛选之后的SVR混合模型预测值具有更高的准确度,验证了此模型的可行性。 展开更多
关键词 数控 回归支持向量 变量敏感度筛选 热误差
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
8
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
基于逻辑回归和支持向量机耦合模型的滑坡易发性分析 被引量:10
9
作者 李成林 刘严松 +3 位作者 赖思翰 王地 何星慧 刘琦 《自然灾害学报》 CSCD 北大核心 2024年第2期75-86,共12页
滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机... 滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机(logistic regression-support vector machine,LR-SVM)耦合模型,搭建滑坡易发性评价体系,完成旺苍县滑坡易发性评价并进行模型精度比较。研究结果表明:逻辑回归-支持向量机耦合模型的评价指标结果均优于逻辑回归模型,易发性分区结果更合理,预测精度更高;在低易发区选取非滑坡点为提高滑坡易发性评价性能作用明显;研究区内道路、高程和NDVI对滑坡发育的敏感性较强;高易发区主要分布于低海拔的水系和道路两侧。 展开更多
关键词 滑坡易发性评价 逻辑回归 支持向量 耦合模型 旺苍县
在线阅读 下载PDF
结合支持向量机回归应用于水体中两种喹诺酮类抗生素的荧光检测 被引量:1
10
作者 王艺霏 王晓东 +2 位作者 Zakhar Maletskyi 王莎莎 马继平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第12期3576-3582,共7页
喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度... 喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度高、准确度好,但时间消耗较久、仪器设备价格昂贵、现场检测较困难,而荧光分析技术检测时间短,尤其是三维荧光光谱技术能够在短时间内通过一次检测获得大量的目标物特征信息,通过与数据统计及机器学习模型相结合,利用数学手段可以在短时间内对多种QNs进行检测。充分利用QNs的荧光光谱信息,结合支持向量机回归(SVMR)分别创建以氧氟沙星(OFL)和诺氟沙星(NOR)为代表的QNs预测模型,再将未知样品的荧光光谱信息代入到创建的模型中,即可快速获得测定结果。在构建模型的过程中将偏最小二乘-判别分析(PLS-DA)和SVMR这两种监督学习方式作比较,发现SVMR具有良好的预测效果,通过调整参数与核函数,可使OFL和NOR在2~600μg·L^(-1)范围内具有良好的线性范围,线性相关系数均为0.9920,最低检出限在0.064~0.080μg·L^(-1)之间。将该方法应用到青岛市近岸海水和水库水的QNs检测,OFL在海水中的平均加标回收率为98.62%,在水库水中的平均加标回收率为103.90%,NOR在海水中的平均加标回收率为104.01%,在水库水中的平均加标回收率为105.89%,两种QNs在实际水体中的标准偏差均不超过9.21%。该方法检测速度快,在3 min内即可完成对一个未知样品的定量分析,可以快速筛查环境中是否存在QNs的风险因素。创新性的采用SVMR与荧光光谱技术相结合的方法,研发了一种可以用于实际水体中QNs现场快速检测的新方法,为实现环境水体中QNs的现场快速检测提供了一种科学可靠的新思路。 展开更多
关键词 荧光光谱 支持向量回归 喹诺酮类抗生素 现场快速检测
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:4
11
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:6
12
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量回归 灰狼优化算法
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
13
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 客舱座椅 支持向量回归 粒子群算法 舒适度评价预测
在线阅读 下载PDF
增量式稀疏密度加权孪生支持向量回归机
14
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏化 密度加权 牛顿迭代法
在线阅读 下载PDF
基于支持向量机的输电线路覆冰回归模型 被引量:45
15
作者 戴栋 黄筱婷 +3 位作者 代洲 郝艳捧 李立浧 傅闯 《高电压技术》 EI CAS CSCD 北大核心 2013年第11期2822-2828,共7页
为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针... 为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针对实测微气象-覆冰数据多维、自由度大的特性,选定与覆冰相关性最大的气温、相对空气湿度数据以及覆冰参考量作为输入量,覆冰质量作为输出量;提出了基于支持向量机的超短期预测、短期迟滞预测和滚动预测3种预测模型,并通过实例数据仿真评估了模型的有效性。结果表明:超短期预测模型预测精度>90%,但时效仅15min、实用价值较低;短期迟滞预测模型和滚动预测模型在2h内预测精度均>80%,可适用于输电线路覆冰的短期实时预测;滚动预测模型理论上可预测更长期的覆冰情况,假设微气象参量恒定不变限制了其预测精度,若结合微气象预报将会有更好的预测效果。由于目前适用于建模仿真的完整覆冰数据较少,因此支持向量机用于建立输电线路覆冰回归模型的有效性和稳定性还有待进一步验证。 展开更多
关键词 覆冰 输电线路 支持向量 回归模型 短期预测 在线监测
在线阅读 下载PDF
支持向量回归机在数控加工中心热误差建模中的应用 被引量:45
16
作者 苗恩铭 龚亚运 +1 位作者 成天驹 陈海东 《光学精密工程》 EI CAS CSCD 北大核心 2013年第4期980-986,共7页
研究并选择最佳模型对数控加工中心加工过程中的主要误差源-主轴热误差进行补偿,以便提高机床的加工精度。以leaderway-V450加工中心为实验对象,对主轴热误差支持向量回归机模型和多元回归模型进行了分析对比。首先,根据夏季数据建立了... 研究并选择最佳模型对数控加工中心加工过程中的主要误差源-主轴热误差进行补偿,以便提高机床的加工精度。以leaderway-V450加工中心为实验对象,对主轴热误差支持向量回归机模型和多元回归模型进行了分析对比。首先,根据夏季数据建立了多元回归模型和支持向量回归机模型。然后,将夏季另一批数据和秋季数据分别代入两种模型计算各模型补偿精度。最后,根据两种模型的精度变化规律比较两者稳健性。实验结果表明:支持向量回归机夏季模型用于补偿夏季和秋季热误差补偿标准差都小于2μm,而多元回归模型用于补偿夏季数据补偿标准差小于2μm,用于补偿秋季数据补偿标准差大于8μm。数据显示支持向量回归机模型用于热误差补偿不仅具有较高精度,同时具有较好鲁棒性。 展开更多
关键词 热误差 多元回归模型 支持向量回归 数控加工中心
在线阅读 下载PDF
基于回归型支持向量机的空战目标威胁评估 被引量:35
17
作者 郭辉 徐浩军 刘凌 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第1期123-126,共4页
空战目标威胁评估是协同多目标攻击中的关键问题.针对传统空战目标威胁评估方法在确定权重系数方面的不足,提出了一种新的基于回归型支持向量机的评估方法.在分析了现有的空战目标威胁评估方法中距离威胁模型存在缺陷的基础上,提出了改... 空战目标威胁评估是协同多目标攻击中的关键问题.针对传统空战目标威胁评估方法在确定权重系数方面的不足,提出了一种新的基于回归型支持向量机的评估方法.在分析了现有的空战目标威胁评估方法中距离威胁模型存在缺陷的基础上,提出了改进的距离威胁模型.建立了基于回归型支持向量机的空战目标威胁评估模型,利用该模型对想定的空战目标进行了威胁评估.仿真结果表明,该方法具有很好的预测能力,可以快速、准确地完成空战目标威胁评估. 展开更多
关键词 空战 威胁评估 支持向量 回归支持向量
在线阅读 下载PDF
基于支持向量机回归算法的小麦叶面积指数高光谱遥感反演 被引量:43
18
作者 林卉 梁亮 +1 位作者 张连蓬 杜培军 《农业工程学报》 EI CAS CSCD 北大核心 2013年第11期139-146,共8页
为给小麦田间管理提供基础数据,利用高光谱指数实现了小麦冠层叶面积指数(LAI)值的估测。在21种高光谱指数中筛选出了与LAI值相关性最强的指数OSAVI,建立了小麦LAI值反演的最小二乘支持向量回归(LS-SVR)模型。分析表明,模型校正集决定系... 为给小麦田间管理提供基础数据,利用高光谱指数实现了小麦冠层叶面积指数(LAI)值的估测。在21种高光谱指数中筛选出了与LAI值相关性最强的指数OSAVI,建立了小麦LAI值反演的最小二乘支持向量回归(LS-SVR)模型。分析表明,模型校正集决定系数(C-R2)与预测集决定系数(P-R2)分别达0.851与0.848,可实现小麦LAI值的精确反演,且对LAI值较高与较低的样本均具备良好的预测能力,可有效避免冠层郁闭度等因素对估测结果的影响。利用LS-SVR模型与OMIS影像实现了小麦LAI遥感专题图的制作,其填图结果与地面实测值拟合模型R2达0.774,RMSE仅为0.476,2组数据具有较高的相似度。结果表明:可利用高光谱指数实现小麦冠层LAI值信息的准确获取,且OSAVI系反演建模的优选指数,LS-SVR为建模的优选算法。该研究可为小麦等农作物的长势评估提供参考。 展开更多
关键词 遥感 支持向量 回归分析 叶面积指数(LAI) 反演 小麦
在线阅读 下载PDF
基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型 被引量:40
19
作者 刘双印 徐龙琴 +1 位作者 李道亮 曾利华 《农业工程学报》 EI CAS CSCD 北大核心 2012年第23期167-175,共9页
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用... 养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。 展开更多
关键词 模型 优化 算法 溶解氧预测 最小二乘支持向量回归 河蟹养殖
在线阅读 下载PDF
支持向量机的时间序列回归与预测 被引量:63
20
作者 董辉 傅鹤林 冷伍明 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第7期1785-1788,共4页
详细分析了支持向量机用于时间序列预测的理论基础。采用支持向量机、RBF和Elman神经网络模型,对仿真时序和工程滑坡变形时序进行了回归与外延预测。结果表明,在噪声水平较低时,SVR回归效果稍好,Elman与RBF网络的稳健性相对较差;随着噪... 详细分析了支持向量机用于时间序列预测的理论基础。采用支持向量机、RBF和Elman神经网络模型,对仿真时序和工程滑坡变形时序进行了回归与外延预测。结果表明,在噪声水平较低时,SVR回归效果稍好,Elman与RBF网络的稳健性相对较差;随着噪声水平增大,两种神经网络的回归精度迅速下降。对于外延预测,两种神经网络仅限于短期的非线性模拟,而泛化性能更好的SVR在短期具有比较理想的效果,在较长的时间区间里也具有较高的预测精度(7步预测准确度控制在83.5%以上)。 展开更多
关键词 支持向量 回归 ELMAN网络 滑坡变形
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部