期刊文献+
共找到481篇文章
< 1 2 25 >
每页显示 20 50 100
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
1
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
2
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
基于支持向量域数据描述的快速学习算法 被引量:3
3
作者 赵英刚 陈奇 何钦铭 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期798-800,共3页
支持向量域数据描述(SVDD)是一种单值分类算法,用于将目标样本与其他非目标样本区分开来。本文引入数学中曲率的概念,根据分类边界线附近支持向量曲率的大小来对训练集进行约减;提出了一种约减型的支持向量域数据描述快速训练算法FSVDD... 支持向量域数据描述(SVDD)是一种单值分类算法,用于将目标样本与其他非目标样本区分开来。本文引入数学中曲率的概念,根据分类边界线附近支持向量曲率的大小来对训练集进行约减;提出了一种约减型的支持向量域数据描述快速训练算法FSVDD,该算法与传统SVDD相比减少了训练时所需的支持向量数目,因而训练时间极大减少,同时分类性能几乎不受大的影响,该算法在大规模训练样本学习中具有现实意义. 展开更多
关键词 支持向量数据描述 支持向量 快速学习
在线阅读 下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
4
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
在线阅读 下载PDF
基于得分矩阵和支持向量数据描述(SM-SVDD)的过程监测 被引量:1
5
作者 衷路生 吴卓卓 +2 位作者 谭畅 龚锦红 张永贤 《科学技术与工程》 北大核心 2016年第8期125-131,共7页
针对复杂工业过程中的非线性和高斯信息问题,提出了一种基于SM-SVDD(score matrix-support vector data description)的过程监测方法。SVDD模型不受线性和高斯假设的限制,克服了传统PCA统计监测方法假设过程满足线性和高斯分布的缺陷。... 针对复杂工业过程中的非线性和高斯信息问题,提出了一种基于SM-SVDD(score matrix-support vector data description)的过程监测方法。SVDD模型不受线性和高斯假设的限制,克服了传统PCA统计监测方法假设过程满足线性和高斯分布的缺陷。首先,应用PCA算法对过程数据进行分解,提取出得分矩阵信息。然后,采用SVDD算法对得分矩阵建立基于距离的统计量并构建其相应的统计限。通过对Tennessee Eastman(TE)过程的仿真研究,验证了提出的故障监测算法的可行性和有效性,并提高了故障的监测效果。 展开更多
关键词 主成分分析方法 支持向量数据描述 得分矩阵 故障检测
在线阅读 下载PDF
基于不平衡支持向量数据描述的故障诊断算法 被引量:4
6
作者 韩志艳 王健 《计算机工程》 CAS CSCD 北大核心 2017年第5期156-162,共7页
分析无监督和监督故障诊断方法的特点,提出一种能够结合两者优势的不平衡支持向量数据描述(ISVDD)算法。该算法具有无监督故障诊断方法的优势,通过描述正常工况样本的边界分布状况,寻找最能代表正常工况特点的特征。借鉴监督故障诊断方... 分析无监督和监督故障诊断方法的特点,提出一种能够结合两者优势的不平衡支持向量数据描述(ISVDD)算法。该算法具有无监督故障诊断方法的优势,通过描述正常工况样本的边界分布状况,寻找最能代表正常工况特点的特征。借鉴监督故障诊断方法,引入故障工况样本中蕴含的判别信息,更准确地描述正常工况样本的真实边界。针对故障诊断中常见的类别不平衡情况进行优化,将传统的SVDD中对样本类别分布敏感的经验误差替换为对样本类别分布鲁棒的曲线下面积。数值仿真和工业实例验证了提出算法的有效性。 展开更多
关键词 故障诊断 数据驱动 支持向量数据描述 不平衡数据 SECOM数据
在线阅读 下载PDF
基于RBF的支持向量数据描述算法性能分析 被引量:2
7
作者 阜艳 余君 《现代电子技术》 2009年第20期140-142,146,共4页
核函数的选择对支持向量数据描述算法(SVDD)的性能有重要的影响,是SVDD研究的一个核心问题。通过对SVDD算法中常用核函数进行分析,验证了高斯核函数在单值分类问题上具有一定的优越性,并分别探讨相同样本数据集不同规模样本和不同样本... 核函数的选择对支持向量数据描述算法(SVDD)的性能有重要的影响,是SVDD研究的一个核心问题。通过对SVDD算法中常用核函数进行分析,验证了高斯核函数在单值分类问题上具有一定的优越性,并分别探讨相同样本数据集不同规模样本和不同样本数据集相似规模样本中,高斯核参数对SVDD分类器的影响。实验表明,基于高斯核函数的支持,向量数据描述算法适合于小规模样本的单值分类问题。 展开更多
关键词 支持向量数据描述 核函数 高斯核函数 单值分类
在线阅读 下载PDF
基于支持向量数据描述和不确定性推理的单类隐写分析算法 被引量:2
8
作者 李忱 赵林 《科学技术与工程》 北大核心 2018年第10期83-89,共7页
单类隐写分析较传统的二类隐写分析有更好的"盲"检测特性和更强的通用性。针对单类隐写分析可靠性较低的问题,将不确定性推理理论应用于隐写分析中降低不确定性因素对单类隐写分析可靠性的影响,提出了一种基于支持数据描述和... 单类隐写分析较传统的二类隐写分析有更好的"盲"检测特性和更强的通用性。针对单类隐写分析可靠性较低的问题,将不确定性推理理论应用于隐写分析中降低不确定性因素对单类隐写分析可靠性的影响,提出了一种基于支持数据描述和不确定性推理的单类通用隐写分析算法。实验表明,算法具有较好的可靠性、鲁棒性、通用性。 展开更多
关键词 隐写分析 不确定性 D-S证据理论 支持向量数据描述
在线阅读 下载PDF
一种数据域描述的加权支持向量回归算法
9
作者 吴水亭 《计算机工程与应用》 CSCD 北大核心 2009年第35期24-27,共4页
针对支持向量回归中由于噪声和孤立点带来的过拟合问题,提出了一种基于支持向量数据域描述的加权系数函数模型,根据样本到特征空间最小包含超球球心的距离来确定其加权系数。将提出的加权系数模型用于加权支持向量回归中,一维数据集仿... 针对支持向量回归中由于噪声和孤立点带来的过拟合问题,提出了一种基于支持向量数据域描述的加权系数函数模型,根据样本到特征空间最小包含超球球心的距离来确定其加权系数。将提出的加权系数模型用于加权支持向量回归中,一维数据集仿真表明,提出的模型可以有效减小回归误差,提高支持向量回归算法的抗噪声能力。 展开更多
关键词 支持向量回归 数据描述 加权系数
在线阅读 下载PDF
一种基于支持向量数据描述的特征选择算法 被引量:5
10
作者 曹晋 张莉 李凡长 《智能系统学报》 CSCD 北大核心 2015年第2期215-220,共6页
已有基于支持向量数据描述的特征选择方法计算量较大,导致特征选择的时间过长。针对此问题,提出了一种新的基于支持向量数据描述的特征选择算法。新方法的特征选择是通过超球体球心方向上的能量大小来决定且采用了递归特征消除方式来逐... 已有基于支持向量数据描述的特征选择方法计算量较大,导致特征选择的时间过长。针对此问题,提出了一种新的基于支持向量数据描述的特征选择算法。新方法的特征选择是通过超球体球心方向上的能量大小来决定且采用了递归特征消除方式来逐渐剔除掉冗余特征。在Leukemia数据集上的实验结果表明,新方法能够进行快速的特征选择,且所选择的特征对后续的分类是有效的。 展开更多
关键词 支持向量数据描述 特征选择 递归计算 递归特征消除 癌症识别 基因表达
在线阅读 下载PDF
基于支持向量数据描述算法的SVM多分类新方法 被引量:4
11
作者 张贝贝 何中市 《计算机应用研究》 CSCD 北大核心 2007年第11期46-48,共3页
提出一种基于支持向量数据描述算法(SVDD)的多分类方法(S-MSVM)。受SVDD的启发,该方法对每类样本建立一个超球来界定,但训练好的超球在所有情况下都是相交的。选择相交区域的样本单独建立超球,重复该步骤,直到相交区域消失或相交区域内... 提出一种基于支持向量数据描述算法(SVDD)的多分类方法(S-MSVM)。受SVDD的启发,该方法对每类样本建立一个超球来界定,但训练好的超球在所有情况下都是相交的。选择相交区域的样本单独建立超球,重复该步骤,直到相交区域消失或相交区域内没有样本点。给出了该方法的时间复杂度分析,并通过实验验证了该方法具有相对较好的训练精度。 展开更多
关键词 支持向量数据描述算法 支持向量机多分类 分类器
在线阅读 下载PDF
利用证据理论的多分类支持向量数据描述算法 被引量:8
12
作者 张世醒 韩德强 范晓婧 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第2期151-160,共10页
针对原始多分类支持向量数据描述(SVDD)算法及其拓展算法忽略超球体之间的差异,且未能充分利用超球体的输出信息等问题,提出一种利用证据理论的多分类支持向量数据描述(证据SVDD多分类)算法。首先,为每一类样本训练一个超球体,并计算每... 针对原始多分类支持向量数据描述(SVDD)算法及其拓展算法忽略超球体之间的差异,且未能充分利用超球体的输出信息等问题,提出一种利用证据理论的多分类支持向量数据描述(证据SVDD多分类)算法。首先,为每一类样本训练一个超球体,并计算每个超球体的正确率与紧密程度;接着使用上一步得到的正确率与紧密程度计算每个超球体的可靠程度;然后,根据超球体的输出信息与可靠程度计算样本的信度函数,信度函数的生成方式采用三焦元法和基于评价矩阵的方法;最后,根据Dempster组合规则融合上一步得到的信度函数,使用Pignistic法将融合后的信度函数转换为概率做出最终的判决。在两个人工数据集和多个UCI数据集上进行实验,结果表明,证据SVDD多分类算法相较传统算法可以获得更好的分类性能;在多个数据集上的仿真结果表明,证据SVDD多分类算法比传统的SVDD多分类算法有3%的精度提升。 展开更多
关键词 证据理论 支持向量数据描述 多属性决策 信度函数
在线阅读 下载PDF
基于果蝇优化算法-小波支持向量数据描述的滚动轴承性能退化评估 被引量:22
13
作者 朱朔 白瑞林 刘秦川 《中国机械工程》 EI CAS CSCD 北大核心 2018年第5期602-608,共7页
针对支持向量数据描述(SVDD)算法对滚动轴承早期故障不敏感、参数选择困难的问题,提出了一种基于果蝇优化算法-小波支持向量数据描述(FOA-WSVDD)的滚动轴承性能退化评估方法。提取滚动轴承早期无故障振动信号的时域、时频域特征向量,并... 针对支持向量数据描述(SVDD)算法对滚动轴承早期故障不敏感、参数选择困难的问题,提出了一种基于果蝇优化算法-小波支持向量数据描述(FOA-WSVDD)的滚动轴承性能退化评估方法。提取滚动轴承早期无故障振动信号的时域、时频域特征向量,并基于单调性进行特征选择;针对现有核函数对滚动轴承早期故障不敏感问题,将小波核函数引入到SVDD算法中;针对SVDD算法参数选择困难的问题,以支持向量个数与总样本数的比值作为适应度函数,采用改进的FOA算法对其核参数进行优化,建立FOA-WSVDD评估模型;最后,将轴承后期振动数据的特征向量输入到该WSVDD模型中,得到轴承的性能退化指标。试验结果表明,采用所提方法能准确地对轴承早期故障作出预警,与基于高斯核函数的SVDD算法相比,提前了17h。 展开更多
关键词 轴承 果蝇优化算法 小波支持向量数据描述 小波核
在线阅读 下载PDF
基于遗传算法和支持向量数据描述的多项式轮廓内自相关过程监控 被引量:1
14
作者 薛丽 贾元忠 曹逗逗 《计算机应用》 CSCD 北大核心 2022年第S02期285-289,共5页
多项式轮廓数据在复杂产品制造过程中是一类广泛存在的质量数据类型。为了能尽快监测出多项式轮廓内自相关过程中的异常,针对仅存在正常样本的质量数据提出一种基于支持向量数据描述(SVDD)的监控方法。首先,消除轮廓间相关性,构建SVDD... 多项式轮廓数据在复杂产品制造过程中是一类广泛存在的质量数据类型。为了能尽快监测出多项式轮廓内自相关过程中的异常,针对仅存在正常样本的质量数据提出一种基于支持向量数据描述(SVDD)的监控方法。首先,消除轮廓间相关性,构建SVDD监控方法流程,运用遗传算法(GA)选择SVDD参数和核函数参数进行仿真;然后,通过仿真实验模拟得到平均运行长度,以平均运行长度为准则,对比分析采用高斯核函数和多项式核函数SVDD方法的监控性能;最后,与传统控制图进行对比。实验结果表明监控截距、一次项系数、二次项系数时,采用多项式核函数SVDD方法的失控平均运行长度小于T^(2)、T_(residual)^(2)控制图,即监控效果优于其他控制图。 展开更多
关键词 多项式轮廓 自相关过程 支持向量数据描述 遗传算法 核函数
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
15
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量 SVM 支持向量数据描述 svdd 拒识 模式识别
在线阅读 下载PDF
基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究 被引量:25
16
作者 付文龙 周建中 +3 位作者 李超顺 肖汉 肖剑 朱文龙 《中国电机工程学报》 EI CSCD 北大核心 2014年第32期5788-5795,共8页
水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用... 水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用核变换将故障样本映射到高维特征空间,并采用SVDD提取不平衡故障样本域的边界支持向量样本,构建基于相对距离模糊阈值和KNN的决策规则,最终在此基础上建立机组故障诊断模型。用该模型对经过不平衡处理的国际标准测试数据样本进行测试实验,并与支持向量机(support vector machine,SVM)及目前应用较多的SVDD模型的分类结果进行对比,结果表明该模型可有效解决不平衡样本分类倾斜性问题。最后,将模型用于某水电厂机组振动故障诊断,取得了较高的诊断精度,证明了该方法的有效性。 展开更多
关键词 支持向量数据描述(svdd) K近邻(KNN) 模糊阈值 不平衡 故障诊断
在线阅读 下载PDF
支持向量数据描述在西北暴雨预报中的应用试验 被引量:18
17
作者 燕东渭 孙田文 +2 位作者 杨艳 方建刚 刘志镜 《应用气象学报》 CSCD 北大核心 2007年第5期676-681,共6页
传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类... 传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类(多数类)的平庸的分类器。支持向量数据描述是从支持向量机(SVM)发展而来的基于核的机器学习方法,只使用一类样本就可以工作,适合于不平衡类别。以铜川暴雨预测作为试验对象,对SVM和支持向量数据描述(SVDD)进行了对比试验。试验结果表明对于这个不平衡类别问题SVDD具有优势。 展开更多
关键词 机器学习 支持向量数据描述(svdd) 支持向量机(SVM) 暴雨预测
在线阅读 下载PDF
基于支持向量数据描述的异常检测方法 被引量:17
18
作者 杨敏 张焕国 +1 位作者 傅建明 罗敏 《计算机工程》 EI CAS CSCD 北大核心 2005年第3期39-42,共4页
提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数... 提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数据集进行模型训练,降低了训练集的要求。在KDD CUP'99 标准入侵检测数据集上进行实验,并与无监督聚类异常检测实验结果相比较,证实该方法能够获得较高检测率和较低误警率。 展开更多
关键词 异常检测方法 支持向量 入侵检测 数据 描述模型 无监督聚类 数据描述 法能 正常 行为
在线阅读 下载PDF
支持向量数据描述用于机械设备状态评估研究 被引量:22
19
作者 李凌均 韩捷 +2 位作者 郝伟 董辛 何正嘉 《机械科学与技术》 CSCD 北大核心 2005年第12期1426-1429,共4页
本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从... 本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从而为设备管理和预知维修提供科学的决策依据。将该方法应用于某炼油厂关键设备的运行状态评估中,及时、正确地评价出设备状态异常,为成功诊断出螺栓裂纹的早期故障提供帮助。 展开更多
关键词 支持向量数据描述 单值分类 状态监测 故障诊断
在线阅读 下载PDF
基于支持向量数据描述的机械故障诊断研究 被引量:56
20
作者 李凌均 张周锁 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第9期910-913,共4页
为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目... 为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目标样本.将这种方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态,且不需要对原始数据进行特征提取.实验结果表明,支持向量数据描述法与传统的神经网络方法相比,具有较好的分类能力和较高的计算效率. 展开更多
关键词 支持向量数据描述 单值分类 故障诊断
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部