期刊文献+
共找到331篇文章
< 1 2 17 >
每页显示 20 50 100
基于概率密度支持向量描述的多模态过程故障检测
1
作者 张成 李瑞涵 李元 《计算机应用与软件》 北大核心 2025年第7期291-300,共10页
针对传统欧氏距离优化高斯核宽参数易受到多模态数据方差差异显著影响的问题,提出一种基于概率密度支持向量描述的多模态过程故障诊断模型。该文将多工况过程数据利用高斯混合模型进行模式识别,并分别计算其概率密度值;应用概率分位点... 针对传统欧氏距离优化高斯核宽参数易受到多模态数据方差差异显著影响的问题,提出一种基于概率密度支持向量描述的多模态过程故障诊断模型。该文将多工况过程数据利用高斯混合模型进行模式识别,并分别计算其概率密度值;应用概率分位点找出各工况下的近邻与远邻样本,将其合并构成新的样本集用于优化高斯核宽参数,并使用最优核宽参数建立多个子SVDD;利用基于变量贡献图的方法进行故障诊断。将所提方法应用于数值例子和田纳西伊斯曼(Tennessee Eastman,TE)化工过程,并将实验结果与传统SVDD和DFN-SVDD进行对比,验证了所提方法的有效性。 展开更多
关键词 支持向量描述 概率密度 故障检测 多模态过程 过程控制
在线阅读 下载PDF
基于支持向量描述的自适应高光谱异常检测算法 被引量:11
2
作者 梅锋 赵春晖 +1 位作者 王立国 尤佳 《光子学报》 EI CAS CSCD 北大核心 2009年第11期2820-2825,共6页
提出了一种应用于高光谱异常检测的自适应支持向量数据描述方法.根据高光谱数据和局部异常检测模型的特点,通过局部背景分波段二阶分布统计,分析了核参量与局部背景总体标准差的变化关系,构造了随检测背景变化的局部检测核参量,使得检... 提出了一种应用于高光谱异常检测的自适应支持向量数据描述方法.根据高光谱数据和局部异常检测模型的特点,通过局部背景分波段二阶分布统计,分析了核参量与局部背景总体标准差的变化关系,构造了随检测背景变化的局部检测核参量,使得检测算法针对不同背景分布自适应地调整检测核参量.克服了传统支持向量描述算法由于采用固定核参量带来的复杂背景下检测性能下降的问题.通过模拟数据和真实高光谱数据的测试检验,接收机特性曲线表明该算法相对于传统固定核参量支持向量数据描述方法,在相同虚警概率下检测概率提高了10%. 展开更多
关键词 高光谱 异常检测 自适应 核方法 支持向量描述
在线阅读 下载PDF
支持向量描述鉴别分析及在人脸识别中的应用 被引量:7
3
作者 陈长军 詹永照 文传军 《计算机应用研究》 CSCD 北大核心 2010年第2期488-490,共3页
数据降维是模式识别的重要组成部分。支持向量鉴别分析(support vector discriminant analysis,SVDA)依最优超平面法线方向投影对数据进行降维,克服了传统方法中假设数据满足高斯分布时,导致无法反映超平面单侧中多类数据间投影距离差... 数据降维是模式识别的重要组成部分。支持向量鉴别分析(support vector discriminant analysis,SVDA)依最优超平面法线方向投影对数据进行降维,克服了传统方法中假设数据满足高斯分布时,导致无法反映超平面单侧中多类数据间投影距离差异并影响了算法有效性的缺点。提出一种支持向量描述鉴别分析(support vec-tor description discriminant analysis,SVDDA)算法,首先利用支持向量机最优超平面获取样本的类属信息,然后通过SVDD的超球面法线作为投影轴取得样本的投影距离,取两信息的组合作为样本的特征映射。算法利用SVDD的一类紧致超球特性,弥补支持向量鉴别分析的不足。通过人脸识别实验,验证了该算法的有效性。 展开更多
关键词 特征降维 支持向量鉴别分析 支持向量数据描述 支持向量描述鉴别分析 人脸识别
在线阅读 下载PDF
基于支持向量描述的人工免疫检测算法 被引量:2
4
作者 潘志松 罗隽 +1 位作者 倪桂强 胡谷雨 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期302-306,共5页
为了提高人工免疫中检测器生成算法的有效性,需要设计一种对“自己”进行有效描述的算法.本文给出了一种基于支持向量描述(SVDD)的人工免疫检测算法,该算法首先通过核函数将输入空间映射到一个高维空间,在这个高维空间构造一个包... 为了提高人工免疫中检测器生成算法的有效性,需要设计一种对“自己”进行有效描述的算法.本文给出了一种基于支持向量描述(SVDD)的人工免疫检测算法,该算法首先通过核函数将输入空间映射到一个高维空间,在这个高维空间构造一个包含所有“自己”细胞的的球体;在球面上的样本点即为SVDD所求得的支持向量,球体之外的数据即为“非己”细胞.在UCI的标准数据集和入侵检测数据集上进行实验,证实该算法的有效性. 展开更多
关键词 人工免疫 检测器 支持向量描述 单类分类器
在线阅读 下载PDF
基于写相关支持向量描述的入侵防护审计模型研究 被引量:2
5
作者 罗隽 潘志松 +1 位作者 缪志敏 胡谷雨 《通信学报》 EI CSCD 北大核心 2007年第7期8-14,共7页
设计了基于写相关支持向量描述的安全审计模型来实现一个新的单类分类器,对系统调用中"写性质"子集进行监视和分析,并以此训练单类分类器,使偏离正常模式的活动都被认为是潜在的入侵。该模型仅利用正常样本建立了单分类器,因... 设计了基于写相关支持向量描述的安全审计模型来实现一个新的单类分类器,对系统调用中"写性质"子集进行监视和分析,并以此训练单类分类器,使偏离正常模式的活动都被认为是潜在的入侵。该模型仅利用正常样本建立了单分类器,因此系统还具有对新的异常行为进行检测的能力。通过对主机系统执行迹国际标准数据集的优化处理,只利用少量的训练样本,实验获得了对异常样本100%的检测率,而平均虚警率接近为0。 展开更多
关键词 入侵防护 入侵检测 安全审计 单类分类器 写相关支持向量描述
在线阅读 下载PDF
基于支持向量描述的安全审计异常检测模型
6
作者 潘志松 罗隽 +1 位作者 倪桂强 胡谷雨 《计算机研究与发展》 EI CSCD 北大核心 2006年第z2期360-365,共6页
在传统的网络安全审计系统中,需要由专家定义攻击特征来检测异常活动.由于攻击数据难以获取,往往只能得到正常用户的系统调用审计信息.设计了基于支持向量描述的单类分类器的安全审计模型,所有偏离正常模式的活动都被认为是入侵.通过对... 在传统的网络安全审计系统中,需要由专家定义攻击特征来检测异常活动.由于攻击数据难以获取,往往只能得到正常用户的系统调用审计信息.设计了基于支持向量描述的单类分类器的安全审计模型,所有偏离正常模式的活动都被认为是入侵.通过对主机系统执行迹国际标准数据集的测试,只利用少量的训练样本,实验获得了对异常样本100%的检测率,而平均虚警率接近为0. 只利用正常样本建立了一个单分类器的异常检测模型,使得系统具有对新的异常行为的检测能力. 展开更多
关键词 安全审计 入侵检测 支持向量描述 单类分类器
在线阅读 下载PDF
基于加权模糊支持向量描述的旋转机械故障分类 被引量:8
7
作者 张永 张凤梅 +1 位作者 谢福鼎 迟忠先 《计算机科学》 CSCD 北大核心 2009年第7期182-184,229,共4页
基于支持向量数据描述良好的分类性能,针对旋转机械故障诊断中故障样本获取的特点,提出了基于正负类样本的加权模糊支持向量数据描述多类分类器,不仅考虑了正类样本,而且也充分考虑了负类样本对分类结果的影响。利用模拟故障样本对系统... 基于支持向量数据描述良好的分类性能,针对旋转机械故障诊断中故障样本获取的特点,提出了基于正负类样本的加权模糊支持向量数据描述多类分类器,不仅考虑了正类样本,而且也充分考虑了负类样本对分类结果的影响。利用模拟故障样本对系统进行了实验,结果表明提出的方法在系统中具有良好的分类能力。 展开更多
关键词 支持向量数据描述 加权 分类器 支持向量
在线阅读 下载PDF
基于改进的PCM支持向量描述多类分类器 被引量:2
8
作者 张永 迟忠先 谢福鼎 《计算机科学》 CSCD 北大核心 2008年第8期149-153,共5页
基于支持向量数据描述和改进的可能性c-均值聚类算法,提出了一种模糊的多类分类学习机。首先通过一个改进的PCM算法来计算每个样本对于每类的权值矩阵,该权值也反映了该样本对某类的重要程度;然后将该权值矩阵应用到支持向量数据描述方... 基于支持向量数据描述和改进的可能性c-均值聚类算法,提出了一种模糊的多类分类学习机。首先通过一个改进的PCM算法来计算每个样本对于每类的权值矩阵,该权值也反映了该样本对某类的重要程度;然后将该权值矩阵应用到支持向量数据描述方法中,并对样本进行训练;最后给出了一个针对多类分类的分类规则(函数),并从理论上证明该分类规则满足贝叶斯优化决策理论。通过对比实验分析,本文提出的算法在分类精度和训练时间上都有较大的改善。 展开更多
关键词 支持向量数据描述 可能性c-均值聚类 最小包围球 分类器 支持向量
在线阅读 下载PDF
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
9
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
10
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
11
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
在线阅读 下载PDF
基于支持向量数据描述的剩余寿命预测方法 被引量:14
12
作者 武千惠 黄必清 《计算机集成制造系统》 EI CSCD 北大核心 2018年第11期2725-2733,共9页
为了解决工业设备关键部件的故障预测问题,基于支持向量数据描述(SVDD),定义了表征设备部件健康状态的退化指数,并由此提出一种剩余寿命预测方法。首先利用小波包分解从历史传感器状态监测数据中提取特征向量;然后通过粒子群优化算法选... 为了解决工业设备关键部件的故障预测问题,基于支持向量数据描述(SVDD),定义了表征设备部件健康状态的退化指数,并由此提出一种剩余寿命预测方法。首先利用小波包分解从历史传感器状态监测数据中提取特征向量;然后通过粒子群优化算法选择能够使训练集退化指数取值的变化趋势更加接近指数规律的核函数参数,进而利用目标部件处于健康状态的特征向量训练SVDD模型,得到相应的超球面;最后通过待测样本点和SVDD超球面间的距离计算退化指数,确定目标部件的健康状态并预测其剩余寿命。最后通过实验验证了所提剩余寿命预测方法的有效性。 展开更多
关键词 支持向量描述 粒子群优化 轴承 故障预测 剩余寿命
在线阅读 下载PDF
基于多元模糊支持向量数据描述的高压电缆缺陷识别 被引量:8
13
作者 刘敏 方义治 +4 位作者 孙廷玺 何伟 罗思琴 兰雪珂 周念成 《电子科技大学学报》 EI CAS CSCD 北大核心 2020年第2期240-247,共8页
为了实现高压电缆缺陷状态准确识别,该文提出基于多元模糊支持向量描述的高压电缆缺陷识别方法。针对原始支持向量描述(SVDD)对异常数据敏感的问题,首先利用竞争凝聚算法对高压电缆训练样本进行模糊聚类和筛选,并利用筛选后样本的隶属度... 为了实现高压电缆缺陷状态准确识别,该文提出基于多元模糊支持向量描述的高压电缆缺陷识别方法。针对原始支持向量描述(SVDD)对异常数据敏感的问题,首先利用竞争凝聚算法对高压电缆训练样本进行模糊聚类和筛选,并利用筛选后样本的隶属度对SVDD加权处理,进而获得高压电缆每种状态的训练样本的最小超球体,实现对高压电缆多种缺陷状态的有效识别。最后,利用广东珠海高压电缆的实际数据对所提模型的可行性和准确性进行验证。 展开更多
关键词 竞争凝聚算法 缺陷识别 超球体 高压电缆 多元模糊支持向量描述
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
14
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量 SVM 支持向量数据描述 SVDD 拒识 模式识别
在线阅读 下载PDF
基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究 被引量:25
15
作者 付文龙 周建中 +3 位作者 李超顺 肖汉 肖剑 朱文龙 《中国电机工程学报》 EI CSCD 北大核心 2014年第32期5788-5795,共8页
水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用... 水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用核变换将故障样本映射到高维特征空间,并采用SVDD提取不平衡故障样本域的边界支持向量样本,构建基于相对距离模糊阈值和KNN的决策规则,最终在此基础上建立机组故障诊断模型。用该模型对经过不平衡处理的国际标准测试数据样本进行测试实验,并与支持向量机(support vector machine,SVM)及目前应用较多的SVDD模型的分类结果进行对比,结果表明该模型可有效解决不平衡样本分类倾斜性问题。最后,将模型用于某水电厂机组振动故障诊断,取得了较高的诊断精度,证明了该方法的有效性。 展开更多
关键词 支持向量数据描述(SVDD) K近邻(KNN) 模糊阈值 不平衡 故障诊断
在线阅读 下载PDF
支持向量数据描述用于机械设备状态评估研究 被引量:22
16
作者 李凌均 韩捷 +2 位作者 郝伟 董辛 何正嘉 《机械科学与技术》 CSCD 北大核心 2005年第12期1426-1429,共4页
本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从... 本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从而为设备管理和预知维修提供科学的决策依据。将该方法应用于某炼油厂关键设备的运行状态评估中,及时、正确地评价出设备状态异常,为成功诊断出螺栓裂纹的早期故障提供帮助。 展开更多
关键词 支持向量数据描述 单值分类 状态监测 故障诊断
在线阅读 下载PDF
基于加权支持向量数据描述的遥感图像病害松树识别 被引量:28
17
作者 胡根生 张学敏 +1 位作者 梁栋 黄林生 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期258-263,287,共7页
利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相... 利用安装在无人机平台上的双光谱相机所获取的可见光和近红外遥感图像,采用改进的加权支持向量数据描述多分类算法,实现病害松树识别。首先根据不同内容信息图像的特点,提取双光谱相机所获取的可见光图像和近红外图像各颜色分量作为相应像素点的颜色特征,再通过提取加窗图像块的灰度共生矩阵得到中心像素点的纹理特征,然后利用权重系数为每类样本分别作加权支持向量数据描述,实现松树状态的多输出分类识别,其中权重系数是通过建立关于训练样本中心距离的权重函数所确定。与传统的人工、航空和卫星遥感识别方法不同,利用无人机平台和双光谱相机获取遥感图像,具有可操作性强、费用低廉等优势。试验结果表明,相比传统的支持向量机和支持向量数据描述算法,改进的加权支持向量数据描述多分类算法更能准确地进行病害松树识别。 展开更多
关键词 松材线虫病害 遥感图像 状态识别 加权支持向量数据描述 多分类
在线阅读 下载PDF
基于支持向量数据描述的机械故障诊断研究 被引量:56
18
作者 李凌均 张周锁 何正嘉 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第9期910-913,共4页
为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目... 为了解决在机械智能监测与诊断中缺少故障样本的问题,提出了一种机械故障单值分类的新方法———支持向量数据描述法.该方法只需要一类目标样本作为学习样本,而不需要其他非目标样本,就可以建立起单值分类器,从而区分了非目标样本和目标样本.将这种方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态,且不需要对原始数据进行特征提取.实验结果表明,支持向量数据描述法与传统的神经网络方法相比,具有较好的分类能力和较高的计算效率. 展开更多
关键词 支持向量数据描述 单值分类 故障诊断
在线阅读 下载PDF
基于EMD和支持向量数据描述的故障智能诊断 被引量:13
19
作者 李强 王太勇 +1 位作者 王正英 黄毅 《中国机械工程》 EI CAS CSCD 北大核心 2008年第22期2718-2721,共4页
针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描... 针对数据维数过高导致的支持向量数据描述的分类结果不理想的问题,提出了一种基于经验模式分解特征提取和支持向量数据描述的故障智能诊断方法,将提取实测信号经经验模式分解后的各基本模式分量的能量作为信号特征,进行支持向量数据描述分类器的训练和分类。滚动轴承故障智能诊断实例表明,该方法可以有效提取信号的故障特征,降低数据维数,提高单值分类在故障智能诊断中的准确性。 展开更多
关键词 支持向量数据描述 经验模式分解 单值分类 故障诊断
在线阅读 下载PDF
基于主元分析的支持向量数据描述机械故障诊断 被引量:18
20
作者 潘明清 周晓军 +1 位作者 吴瑞明 雷良育 《传感技术学报》 EI CAS CSCD 北大核心 2006年第1期128-131,共4页
针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据... 针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据前处理,提取振动信号的统计特征值,得到的主元特征指标输入到SVDD分类器进行训练和测试。试验结果表明,PCA对正常和故障样本有较大的区分度,SVDD分类器能很好的分辨出轴承正常和故障状态,并且对未知故障有良好的识别能力。 展开更多
关键词 故障诊断 特征提取 主元分析 支持向量数据描述 轴承
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部