期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于动态权重优化的风电机组齿轮箱轴承温度预测模型 被引量:1
1
作者 吴九牛 翟广宇 +2 位作者 李德仓 高德成 蒋维栋 《轴承》 北大核心 2024年第9期100-107,共8页
为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预... 为准确预测风电机组齿轮箱轴承的温度状态,结合灰色预测GM(1,N)模型、BP神经网络模型和支持向量回归模型,提出了一种动态权重优化的组合预测模型。通过对3种预测模型的理论分析选择了各自合理的模型结构,并用粒子群算法优化模型参数;预处理齿轮箱轴承温度的原始数据后用指数平滑法确定各单一模型的动态权重系数,建立齿轮箱轴承温度的组合模型;通过滑动窗口法统计分析齿轮箱轴承预测温度的残差,判断齿轮箱轴承的运行状态。研究结果表明:组合模型的各项评价指标均优于单一预测模型,决定系数为0.9772,预测效果更加稳定准确,能够及时监测齿轮箱轴承温度的变化情况。 展开更多
关键词 滚动轴承 风力发电机组 温度 预测 灰色系统 神经网络 支持向量回归预测法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部