针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐...针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。展开更多
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒...支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。展开更多
802.11无线局域网技术的广泛普及,给无线室内定位系统带来了良好的发展契机.提出了一种基于支持向量回归的802.11无线室内定位方法.该方法主要包括离线训练和在线定位两个阶段.离线阶段的主要工作是得到精确的位置预测模型;在线阶段的...802.11无线局域网技术的广泛普及,给无线室内定位系统带来了良好的发展契机.提出了一种基于支持向量回归的802.11无线室内定位方法.该方法主要包括离线训练和在线定位两个阶段.离线阶段的主要工作是得到精确的位置预测模型;在线阶段的主要工作是根据移动设备的接收信号强度(received signal strength,简称RSS)进行在线定位.由于存在室内环境复杂、信道拥塞、障碍物影响和节点的通信半径有限等问题,移动设备的接收信号强度易受干扰,复杂多变.针对以上问题,离线阶段对接收信号强度信息进行统计分析,得出数据过滤规则,对训练数据集进行过滤,以此提高训练样本质量,从而提高支持向量回归预测模型的质量.在线阶段使用连续K次测量定位法获取信号强度信息,保证训练样本与在线输入信息之间的一致性,提高最终的定位精度.通过实验对该定位方法进行了综合对比分析,实验结果表明:与常用概率定位法、神经网络法相比,该方法具有更高的定位精度,同时具有对移动设备的存储容量及其计算能力要求较低的特点.展开更多
文摘针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。
文摘支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。
文摘802.11无线局域网技术的广泛普及,给无线室内定位系统带来了良好的发展契机.提出了一种基于支持向量回归的802.11无线室内定位方法.该方法主要包括离线训练和在线定位两个阶段.离线阶段的主要工作是得到精确的位置预测模型;在线阶段的主要工作是根据移动设备的接收信号强度(received signal strength,简称RSS)进行在线定位.由于存在室内环境复杂、信道拥塞、障碍物影响和节点的通信半径有限等问题,移动设备的接收信号强度易受干扰,复杂多变.针对以上问题,离线阶段对接收信号强度信息进行统计分析,得出数据过滤规则,对训练数据集进行过滤,以此提高训练样本质量,从而提高支持向量回归预测模型的质量.在线阶段使用连续K次测量定位法获取信号强度信息,保证训练样本与在线输入信息之间的一致性,提高最终的定位精度.通过实验对该定位方法进行了综合对比分析,实验结果表明:与常用概率定位法、神经网络法相比,该方法具有更高的定位精度,同时具有对移动设备的存储容量及其计算能力要求较低的特点.