Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge,...Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.展开更多
Cognitive radio(CR) can bring about remarkable improvement in spectrum utilization.Different cognition cycles have been proposed in recent years.However,most of the existing works only emphasize functional or operatio...Cognitive radio(CR) can bring about remarkable improvement in spectrum utilization.Different cognition cycles have been proposed in recent years.However,most of the existing works only emphasize functional or operational aspects of cognition cycle,regardless of other indispensable aspects and the connection between them.To deal with the emerging situation of "data rich,information vague,knowledge poor" in cognitive radio networks(CRNs),we propose the hierarchical cognition cycle(HCC) as a new transdisciplinary research field in this paper.HCC investigates a fundamental problem,which is how to manage available resources in the complex environment to meet various demands in CRN.A comprehensive theoretical framework of HCC is established in terms of the core,the essence loop,the function loop,the operation loop,and the external loop of HCC.The reduction of uncertainty in CRN is studied and several new metrics in HCC are defined.Furthermore,a few research challenges ahead are presented as well.展开更多
基金The authors would like to thank the anonymous reviewers for their insightful corrnlents that have helped improve the presentation of this paper. The work was supported partially by the National Natural Science Foundation of China under Grants No. 61070192, No.91018008, No. 61170240 the National High-Tech Research Development Program of China under Grant No. 2007AA01ZA14 the Natural Science Foundation of Beijing un- der Grant No. 4122041.
文摘Although there exist a few good schemes to protect the kernel hooks of operating systems, attackers are still able to circumvent existing defense mechanisms with spurious context infonmtion. To address this challenge, this paper proposes a framework, called HooklMA, to detect compromised kernel hooks by using hardware debugging features. The key contribution of the work is that context information is captured from hardware instead of from relatively vulnerable kernel data. Using commodity hardware, a proof-of-concept pro- totype system of HooklMA has been developed. This prototype handles 3 082 dynamic control-flow transfers with related hooks in the kernel space. Experiments show that HooklMA is capable of detecting compomised kernel hooks caused by kernel rootkits. Performance evaluations with UnixBench indicate that runtirre overhead introduced by HooklMA is about 21.5%.
基金supported by the National Key Basic Research Program of China(973 Program) under Grant No.2009CB320400the National Natural Science Foundation of China under Grants No.60932002,61172062,61301160the Natural Science Foundation of Jiangsu,China under Grant No.BK2011116
文摘Cognitive radio(CR) can bring about remarkable improvement in spectrum utilization.Different cognition cycles have been proposed in recent years.However,most of the existing works only emphasize functional or operational aspects of cognition cycle,regardless of other indispensable aspects and the connection between them.To deal with the emerging situation of "data rich,information vague,knowledge poor" in cognitive radio networks(CRNs),we propose the hierarchical cognition cycle(HCC) as a new transdisciplinary research field in this paper.HCC investigates a fundamental problem,which is how to manage available resources in the complex environment to meet various demands in CRN.A comprehensive theoretical framework of HCC is established in terms of the core,the essence loop,the function loop,the operation loop,and the external loop of HCC.The reduction of uncertainty in CRN is studied and several new metrics in HCC are defined.Furthermore,a few research challenges ahead are presented as well.