The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring c...The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m^(3)/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m^(3)/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.展开更多
The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA...The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA),the heat affected zone(HAZ),and the weld nugget zone(WNZ)of the joints were studied in 3.5%(mass fraction)aerated aqueous Na Cl solution by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min.However,the value of corrosion rate in the weldments is lower than that in the PA.Additionally,the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ.On the contrary,the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed.The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases.The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy.With increasing the welding speed,the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region.In the HAZ region,in addition to the pits in the corroded area,some cracks can be seen around the corroded areas,which confirms that intergranular corrosion is formed in this area.The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions.Crystallographic pits are observed within the weld regions.展开更多
The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zon...The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.展开更多
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper...This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.展开更多
基金Project(51674304) supported by the National Natural Science Foundation of ChinaProject(19B430013) supported by the Key Scientific Research Projects of Higher Education Institutions in Henan Province,ChinaProject(2017BSJJ013) supported by the Doctor Research Foundation of Zhengzhou University of Light Industry,China
文摘The tribological behaviors of Cu-15Ni-8Sn/graphite composites with the graphite content of 38 vol.%against AISI321 stainless steel under dry-sliding,deionized water and sea water were investigated on a block-on-ring configuration.The results indicated that the friction coefficient was the lowest under dry-sliding,and the highest in deionized water.The wear rate decreased to reach the minimum value of 1.39×10-15 m^(3)/(N·m)in sea water and in deionized water,it increased to the maximum value of 5.56×10-15 m^(3)/(N·m).The deionized water hindered the formation of tribo-oxide layer and lubricating film,which resulted in the largest friction coefficient and wear rate.In sea water,however,the corrosion products comprised of oxides,hydroxides and chlorides were found on the worn surface,and the compacted layer composed of corrosion products and graphite played an important role in keeping the excellent wear resistance.It was elucidated that the tribological behaviors of Cu-15Ni-8Sn/graphite composite were powerful influenced by the friction environments.
文摘The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min.Corrosion behavior of the parent alloy(PA),the heat affected zone(HAZ),and the weld nugget zone(WNZ)of the joints were studied in 3.5%(mass fraction)aerated aqueous Na Cl solution by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min.However,the value of corrosion rate in the weldments is lower than that in the PA.Additionally,the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ.On the contrary,the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed.The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases.The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy.With increasing the welding speed,the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region.In the HAZ region,in addition to the pits in the corroded area,some cracks can be seen around the corroded areas,which confirms that intergranular corrosion is formed in this area.The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions.Crystallographic pits are observed within the weld regions.
基金Project(KYGYJQZL2204) supported by the Basic Frontier Science and Technology Innovation Project of Army Engineering University of PLA,ChinaProjects(30110010403, 30110030103) supported by the Preliminary Research of Equipment,China。
文摘The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints.
文摘This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.