The role of oxides in the formation of hole defects in friction stir welded joint of 2519-T87 aluminum alloy has been investigated by using optical microscope, scanning electron microscope, electron backscatter diffra...The role of oxides in the formation of hole defects in friction stir welded joint of 2519-T87 aluminum alloy has been investigated by using optical microscope, scanning electron microscope, electron backscatter diffraction and electron probe microanalyzer to examine the distribution of oxides and the features of hole defects, and using ABAQUS 3D thermo-mechanical coupling finite element model based on arbitrary Lagrangian-Eulerian method to simulate the material flow behavior. Oxides exist at the edge of tunnel hole and in the micropores in the joint. Based on distribution of oxygen and material flow behavior, it is believed that the oxides on the surface of the alloy tend to flow down into the bulk along the flow direction of plastic material during friction stir welding, aggregate in the weak region of material flow at the intersection of the shoulder affected zone and the stir pin-tip affected zone, and consequently prevent the material from contacting and diffusing. Due to the insufficient material flow and therefore the small plastic deformation,the pressure is not high enough to compress the accumulated oxides, resulting in hole defects.展开更多
The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to p...The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error(MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models' responses, the ANN method can be used to economize material and time.展开更多
文摘The role of oxides in the formation of hole defects in friction stir welded joint of 2519-T87 aluminum alloy has been investigated by using optical microscope, scanning electron microscope, electron backscatter diffraction and electron probe microanalyzer to examine the distribution of oxides and the features of hole defects, and using ABAQUS 3D thermo-mechanical coupling finite element model based on arbitrary Lagrangian-Eulerian method to simulate the material flow behavior. Oxides exist at the edge of tunnel hole and in the micropores in the joint. Based on distribution of oxygen and material flow behavior, it is believed that the oxides on the surface of the alloy tend to flow down into the bulk along the flow direction of plastic material during friction stir welding, aggregate in the weak region of material flow at the intersection of the shoulder affected zone and the stir pin-tip affected zone, and consequently prevent the material from contacting and diffusing. Due to the insufficient material flow and therefore the small plastic deformation,the pressure is not high enough to compress the accumulated oxides, resulting in hole defects.
文摘The application of friction stir welding(FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network(ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error(MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models' responses, the ANN method can be used to economize material and time.